20,837 research outputs found

    Performance Evaluation of Components Using a Granularity-based Interface Between Real-Time Calculus and Timed Automata

    Get PDF
    To analyze complex and heterogeneous real-time embedded systems, recent works have proposed interface techniques between real-time calculus (RTC) and timed automata (TA), in order to take advantage of the strengths of each technique for analyzing various components. But the time to analyze a state-based component modeled by TA may be prohibitively high, due to the state space explosion problem. In this paper, we propose a framework of granularity-based interfacing to speed up the analysis of a TA modeled component. First, we abstract fine models to work with event streams at coarse granularity. We perform analysis of the component at multiple coarse granularities and then based on RTC theory, we derive lower and upper bounds on arrival patterns of the fine output streams using the causality closure algorithm. Our framework can help to achieve tradeoffs between precision and analysis time.Comment: QAPL 201

    The Qualification Problem: A solution to the problem of anomalous models

    Get PDF
    AbstractIntelligent agents in open environments inevitably face the Qualification Problem: The executability of an action can never be predicted with absolute certainty; unexpected circumstances, albeit unlikely, may at any time prevent the successful performance of an action. Reasoning agents in real-world environments rely on a solution to the Qualification Problem in order to make useful predictions but also to explain and recover from unexpected action failures. Yet the main theoretical result known today in this context is a negative one: While a solution to the Qualification Problem requires to assume away by default abnormal qualifications of actions, straightforward minimization of abnormality falls prey to the production of anomalous models. We present an approach to the Qualification Problem which resolves this anomaly. Anomalous models are shown to arise from ignoring causality, and they are avoided by appealing to just this concept. Our theory builds on the established predicate logic formalism of the Fluent Calculus as a solution to the Frame Problem and to the Ramification Problem in reasoning about actions. The monotonic Fluent Calculus is enhanced by a default theory in order to obtain the nonmonotonic approach called for by the Qualification Problem. The approach has been implemented in an action programming language based on the Fluent Calculus and successfully applied to the high-level control of robots

    von Neumann-Morgenstern and Savage Theorems for Causal Decision Making

    Full text link
    Causal thinking and decision making under uncertainty are fundamental aspects of intelligent reasoning. Decision making under uncertainty has been well studied when information is considered at the associative (probabilistic) level. The classical Theorems of von Neumann-Morgenstern and Savage provide a formal criterion for rational choice using purely associative information. Causal inference often yields uncertainty about the exact causal structure, so we consider what kinds of decisions are possible in those conditions. In this work, we consider decision problems in which available actions and consequences are causally connected. After recalling a previous causal decision making result, which relies on a known causal model, we consider the case in which the causal mechanism that controls some environment is unknown to a rational decision maker. In this setting we state and prove a causal version of Savage's Theorem, which we then use to develop a notion of causal games with its respective causal Nash equilibrium. These results highlight the importance of causal models in decision making and the variety of potential applications.Comment: Submitted to Journal of Causal Inferenc

    Quantum Trajectories, State Diffusion and Time Asymmetric Eventum Mechanics

    Full text link
    We show that the quantum stochastic unitary dynamics Langevin model for continuous in time measurements provides an exact formulation of the Heisenberg uncertainty error-disturbance principle. Moreover, as it was shown in the 80's, this Markov model induces all stochastic linear and non-linear equations of the phenomenological "quantum trajectories" such as quantum state diffusion and spontaneous localization by a simple quantum filtering method. Here we prove that the quantum Langevin equation is equivalent to a Dirac type boundary-value problem for the second-quantized input "offer waves from future" in one extra dimension, and to a reduction of the algebra of the consistent histories of past events to an Abelian subalgebra for the "trajectories of the output particles". This result supports the wave-particle duality in the form of the thesis of Eventum Mechanics that everything in the future is constituted by quantized waves, everything in the past by trajectories of the recorded particles. We demonstrate how this time arrow can be derived from the principle of quantum causality for nondemolition continuous in time measurements.Comment: 21 pages. See also relevant publications at http://www.maths.nott.ac.uk/personal/vpb/publications.htm
    • …
    corecore