1,006 research outputs found

    Microcredentials to support PBL

    Get PDF

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings

    Markov field models of molecular kinetics

    Get PDF
    Computer simulations such as molecular dynamics (MD) provide a possible means to understand protein dynamics and mechanisms on an atomistic scale. The resulting simulation data can be analyzed with Markov state models (MSMs), yielding a quantitative kinetic model that, e.g., encodes state populations and transition rates. However, the larger an investigated system, the more data is required to estimate a valid kinetic model. In this work, we show that this scaling problem can be escaped when decomposing a system into smaller ones, leveraging weak couplings between local domains. Our approach, termed independent Markov decomposition (IMD), is a first-order approximation neglecting couplings, i.e., it represents a decomposition of the underlying global dynamics into a set of independent local ones. We demonstrate that for truly independent systems, IMD can reduce the sampling by three orders of magnitude. IMD is applied to two biomolecular systems. First, synaptotagmin-1 is analyzed, a rapid calcium switch from the neurotransmitter release machinery. Within its C2A domain, local conformational switches are identified and modeled with independent MSMs, shedding light on the mechanism of its calcium-mediated activation. Second, the catalytic site of the serine protease TMPRSS2 is analyzed with a local drug-binding model. Equilibrium populations of different drug-binding modes are derived for three inhibitors, mirroring experimentally determined drug efficiencies. IMD is subsequently extended to an end-to-end deep learning framework called iVAMPnets, which learns a domain decomposition from simulation data and simultaneously models the kinetics in the local domains. We finally classify IMD and iVAMPnets as Markov field models (MFM), which we define as a class of models that describe dynamics by decomposing systems into local domains. Overall, this thesis introduces a local approach to Markov modeling that enables to quantitatively assess the kinetics of large macromolecular complexes, opening up possibilities to tackle current and future computational molecular biology questions

    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!)

    Get PDF
    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!

    Adaptive dynamical networks

    Get PDF
    It is a fundamental challenge to understand how the function of a network is related to its structural organization. Adaptive dynamical networks represent a broad class of systems that can change their connectivity over time depending on their dynamical state. The most important feature of such systems is that their function depends on their structure and vice versa. While the properties of static networks have been extensively investigated in the past, the study of adaptive networks is much more challenging. Moreover, adaptive dynamical networks are of tremendous importance for various application fields, in particular, for the models for neuronal synaptic plasticity, adaptive networks in chemical, epidemic, biological, transport, and social systems, to name a few. In this review, we provide a detailed description of adaptive dynamical networks, show their applications in various areas of research, highlight their dynamical features and describe the arising dynamical phenomena, and give an overview of the available mathematical methods developed for understanding adaptive dynamical networks

    Year of the Golden Jubilee: Culture Change in the Past, Present and Future

    Get PDF
    Part 1 of the IACCP Proceedings contains the abstracts and links to the recordings of the XXVI Congress of the International Association for Cross-Cultural Psychology, 2022. (c) 2023, International Association for Cross-Cultural Psychologyhttps://scholarworks.gvsu.edu/iaccp_proceedings/1011/thumbnail.jp

    Examining the Relationships Between Distance Education Students’ Self-Efficacy and Their Achievement

    Get PDF
    This study aimed to examine the relationships between students’ self-efficacy (SSE) and students’ achievement (SA) in distance education. The instruments were administered to 100 undergraduate students in a distance university who work as migrant workers in Taiwan to gather data, while their SA scores were obtained from the university. The semi-structured interviews for 8 participants consisted of questions that showed the specific conditions of SSE and SA. The findings of this study were reported as follows: There was a significantly positive correlation between targeted SSE (overall scales and general self-efficacy) and SA. Targeted students' self-efficacy effectively predicted their achievement; besides, general self- efficacy had the most significant influence. In the qualitative findings, four themes were extracted for those students with lower self-efficacy but higher achievement—physical and emotional condition, teaching and learning strategy, positive social interaction, and intrinsic motivation. Moreover, three themes were extracted for those students with moderate or higher self-efficacy but lower achievement—more time for leisure (not hard-working), less social interaction, and external excuses. Providing effective learning environments, social interactions, and teaching and learning strategies are suggested in distance education

    Each book its own Babel:Conceptual unity and disunity in early modern natural philosophy

    Get PDF
    Natural philosophy changed quickly during the early modern period (1600-1800). Aristotelian philosophy was combated by Cartesian mechanicism, which was soon itself ousted by the Newtonian school. The development of new ideas within a scientific discipline is partially an issue of doing empirical research, in order to exclude positions and progress the field. However, it is also an issue of developing new concepts and a fitting language, in order to be able to express all these new positions being investigated. This second development however also implies that the differences between thinkers might grow too large - the languages in which they express their philosophy can become too different for them to have a meaningful discussion. In this dissertation I investigate, using algorithms that extract the meaning of words from texts, a few hundred texts from these three different school. I do this in order to see how they differ from each other conceptually, how the meaning of words can travel through lines of influence from author to author and how guarding the boundaries of a school and guarding the language they use, relate
    • …
    corecore