116,779 research outputs found

    Inferring Narrative Causality between Event Pairs in Films

    Full text link
    To understand narrative, humans draw inferences about the underlying relations between narrative events. Cognitive theories of narrative understanding define these inferences as four different types of causality, that include pairs of events A, B where A physically causes B (X drop, X break), to pairs of events where A causes emotional state B (Y saw X, Y felt fear). Previous work on learning narrative relations from text has either focused on "strict" physical causality, or has been vague about what relation is being learned. This paper learns pairs of causal events from a corpus of film scene descriptions which are action rich and tend to be told in chronological order. We show that event pairs induced using our methods are of high quality and are judged to have a stronger causal relation than event pairs from Rel-grams

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results

    Group invariance principles for causal generative models

    Full text link
    The postulate of independence of cause and mechanism (ICM) has recently led to several new causal discovery algorithms. The interpretation of independence and the way it is utilized, however, varies across these methods. Our aim in this paper is to propose a group theoretic framework for ICM to unify and generalize these approaches. In our setting, the cause-mechanism relationship is assessed by comparing it against a null hypothesis through the application of random generic group transformations. We show that the group theoretic view provides a very general tool to study the structure of data generating mechanisms with direct applications to machine learning.Comment: 16 pages, 6 figure

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Reframing the L2 learning experience as narrative reconstructions of classroom learning

    Get PDF
    In this study we investigate the situated and dynamic nature of the L2 learning experience through a newly-purposed instrument called the Language Learning Story Interview, adapted from McAdams’ life story interview (2007). Using critical case sampling, data were collected from an equal number of learners of various L2s (e.g., Arabic, English, Mandarin, Spanish) and analyzed using qualitative comparative analysis (Rihoux & Ragin, 2009). Through our data analysis, we demonstrate how language learners construct overarching narratives of the L2 learning experience and what the characteristic features and components that make up these narratives are. Our results provide evidence for prototypical nuclear scenes (McAdams et al., 2004) as well as core specifications and parameters of learners’ narrative accounts of the L2 learning experience. We discuss how these shape motivation and language learning behavior
    • …
    corecore