479 research outputs found

    Housekeeping with multiple autonomous robots: representation, reasoning, and execution

    Get PDF
    We consider a housekeeping domain with static or movable objects, where the goal is for multiple autonomous robots to tidy a house collaboratively in a given amount of time. This domain is challenging in the following ways: commonsense knowledge (e.g., expected locations of objects in the house) is required for intelligent behavior of robots; geometric constraints are required to find feasible plans (e.g., to avoid collisions); in case of plan failure while execution (e.g., due to a collision with movable objects whose presence and location are not known in advance or due to heavy objects that cannot be lifted by a single robot), recovery is required depending on the cause of failure; and collaboration of robots is required to complete some tasks (e.g., carrying heavy objects). We introduce a formal planning, execution and monitoring framework to address the challenges of this domain, by embedding knowledge representation and automated reasoning in each level of decision-making (that consists of discrete task planning, continuous motion planning, and plan execution), in such a way as to tightly integrate these levels. At the high-level, we represent not only actions and change but also commonsense knowledge in a logicbased formalism. Geometric reasoning is lifted to the high-level by embedding motion planning in the domain description. Then a discrete plan is computed for each robot using an automated reasoner. At the mid-level, if a continuous trajectory cannot be computed by a motion planner because the discrete plan is not feasible at the continuous-level, then a different plan is computed by the automated reasoner subject to some (temporal) conditions represented as formulas. At the low-level, if the plan execution fails, then a new continuous trajectory is computed by a motion planner at the mid-level or a new discrete plan is computed using an automated reasoner at the high-level. We illustrate the applicability of this formal framework with a simulation of a housekeeping domain

    CAR-DESPOT: Causally-Informed Online POMDP Planning for Robots in Confounded Environments

    Full text link
    Robots operating in real-world environments must reason about possible outcomes of stochastic actions and make decisions based on partial observations of the true world state. A major challenge for making accurate and robust action predictions is the problem of confounding, which if left untreated can lead to prediction errors. The partially observable Markov decision process (POMDP) is a widely-used framework to model these stochastic and partially-observable decision-making problems. However, due to a lack of explicit causal semantics, POMDP planning methods are prone to confounding bias and thus in the presence of unobserved confounders may produce underperforming policies. This paper presents a novel causally-informed extension of "anytime regularized determinized sparse partially observable tree" (AR-DESPOT), a modern anytime online POMDP planner, using causal modelling and inference to eliminate errors caused by unmeasured confounder variables. We further propose a method to learn offline the partial parameterisation of the causal model for planning, from ground truth model data. We evaluate our methods on a toy problem with an unobserved confounder and show that the learned causal model is highly accurate, while our planning method is more robust to confounding and produces overall higher performing policies than AR-DESPOT.Comment: 8 pages, 3 figures, submitted to 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Interaction Templates for Multi-Robot Systems

    Get PDF
    This work describes a framework for multi-robot problems that require or utilize interactions between robots. Solutions consider interactions on a motion planning level to determine the feasibility and cost of the multi-robot team solution. Modeling these problems with current integrated task and motion planning (TMP) approaches typically requires reasoning about the possible interactions and checking many of the possible robot combinations when searching for a solution. We present a multi-robot planning method called Interaction Templates (ITs) which moves certain types of robot interactions from the task planner to the motion planner. ITs model interactions between a set of robots with a small roadmap. This roadmap is then tiled into the environment and connected to the robots’ individual roadmaps. The resulting combined roadmap allows interactions to be considered by the motion planner. We apply ITs to homogeneous and heterogeneous robot teams under both required and optional cooperation scenarios which previously required a task planning method. We show improved performance over a current TMP planning approach

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    BWIBots: A platform for bridging the gap between AI and human–robot interaction research

    Get PDF
    Recent progress in both AI and robotics have enabled the development of general purpose robot platforms that are capable of executing a wide variety of complex, temporally extended service tasks in open environments. This article introduces a novel, custom-designed multi-robot platform for research on AI, robotics, and especially human–robot interaction for service robots. Called BWIBots, the robots were designed as a part of the Building-Wide Intelligence (BWI) project at the University of Texas at Austin. The article begins with a description of, and justification for, the hardware and software design decisions underlying the BWIBots, with the aim of informing the design of such platforms in the future. It then proceeds to present an overview of various research contributions that have enabled the BWIBots to better (a) execute action sequences to complete user requests, (b) efficiently ask questions to resolve user requests, (c) understand human commands given in natural language, and (d) understand human intention from afar. The article concludes with a look forward towards future research opportunities and applications enabled by the BWIBot platform

    Task scheduling and merging in space and time

    Get PDF
    Every day, robots are being deployed in more challenging environments, where they are required to perform complex tasks. In order to achieve these tasks, robots rely on intelligent deliberation algorithms. In this thesis, we study two deliberation approaches – task scheduling and task planning. We extend these approaches in order to not only deal with temporal and spatial constraints imposed by the environment, but also exploit them to be more efficient than the state-of-the-art approaches. Our first main contribution is a scheduler that exploits a heuristic based on Allen’s interval algebra to prune the search space to be traversed by a mixed integer program. We empirically show that the proposed scheduler outperforms the state of the art by at least one order of magnitude. Furthermore, the scheduler has been deployed on several mobile robots in long-term autonomy scenarios. Our second main contribution is the POPMERX algorithm, which is based on merging of partially ordered temporal plans. POPMERX first reasons with the spatial and temporal structure of separately generated plans. Then, it merges these plans into a single final plan, while optimising the makespan of the merged plan. We empirically show that POPMERX produces better plans that the-state-ofthe- art planners on temporal domains with time windows

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues
    • …
    corecore