51,965 research outputs found

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    Resolving the Raven Paradox: Simple Random Sampling, Stratified Random Sampling, and Inference to the Best Explanation

    Get PDF
    Simple random sampling resolutions of the raven paradox relevantly diverge from scientific practice. We develop a stratified random sampling model, yielding a better fit and apparently rehabilitating simple random sampling as a legitimate idealization. However, neither accommodates a second concern, the objection from potential bias. We develop a third model that crucially invokes causal considerations, yielding a novel resolution that handles both concerns. This approach resembles Inference to the Best Explanation (IBE) and relates the generalization’s confirmation to confirmation of an associated law. We give it an objective Bayesian formalization and discuss the compatibility of Bayesianism and IBE

    How do medical researchers make causal inferences?

    Get PDF
    Bradford Hill (1965) highlighted nine aspects of the complex evidential situation a medical researcher faces when determining whether a causal relation exists between a disease and various conditions associated with it. These aspects are widely cited in the literature on epidemiological inference as justifying an inference to a causal claim, but the epistemological basis of the Hill aspects is not understood. We offer an explanatory coherentist interpretation, explicated by Thagard's ECHO model of explanatory coherence. The ECHO model captures the complexity of epidemiological inference and provides a tractable model for inferring disease causation. We apply this model to three cases: the inference of a causal connection between the Zika virus and birth defects, the classic inference that smoking causes cancer, and John Snow’s inference about the cause of cholera

    Inference, Explanation, and Asymmetry

    Get PDF
    Explanation is asymmetric: if A explains B, then B does not explain A. Tradition- ally, the asymmetry of explanation was thought to favor causal accounts of explanation over their rivals, such as those that take explanations to be inferences. In this paper, we develop a new inferential approach to explanation that outperforms causal approaches in accounting for the asymmetry of explanation

    Presume It Not: True Causes in the Search for the Basis of Heredity

    Get PDF
    Kyle Stanford has recently given substance to the problem of unconceived alternatives, which challenges the reliability of inference to the best explanation (IBE) in remote domains of nature. Conjoined with the view that IBE is the central inferential tool at our disposal in investigating these domains, the problem of unconceived alternatives leads to scientific anti-realism. We argue that, at least within the biological community, scientists are now and have long been aware of the dangers of IBE. We re-analyze the nineteenth-century study of inheritance and development (Stanford’s case study) and extend it into the twentieth century, focusing in particular on both classical Mendelian genetics and the studies by Avery et al. on the chemical nature of the hereditary substance. Our extended case studies show the preference of the biological community for a different methodological standard: the vera causa ideal, which requires that purported causes be shown on non-explanatory grounds to exist and be competent to produce their effects. On this basis, we defend a prospective realism about the biological sciences
    • …
    corecore