97,007 research outputs found

    Causal graph dynamics

    Full text link
    We extend the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these "causal graph dynamics" is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions, and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. KEYWORDS: Dynamical networks, Boolean networks, Generative networks automata, Cayley cellular automata, Graph Automata, Graph rewriting automata, Parallel graph transformations, Amalgamated graph transformations, Time-varying graphs, Regge calculus, Local, No-signalling.Comment: 25 pages, 9 figures, LaTeX, v2: Minor presentation improvements, v3: Typos corrected, figure adde

    Quantum Causal Graph Dynamics

    Get PDF
    Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs---in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. Keywords: Quantum Lattice Gas Automata, Block-representation, Curtis-Hedlund-Lyndon, No-signalling, Localizability, Quantum Gravity, Quantum Graphity, Causal Dynamical Triangulations, Spin Networks, Dynamical networks, Graph Rewriting.Comment: 8 pages, 1 figur

    Causal connectivity of evolved neural networks during behavior

    Get PDF
    To show how causal interactions in neural dynamics are modulated by behavior, it is valuable to analyze these interactions without perturbing or lesioning the neural mechanism. This paper proposes a method, based on a graph-theoretic extension of vector autoregressive modeling and 'Granger causality,' for characterizing causal interactions generated within intact neural mechanisms. This method, called 'causal connectivity analysis' is illustrated via model neural networks optimized for controlling target fixation in a simulated head-eye system, in which the structure of the environment can be experimentally varied. Causal connectivity analysis of this model yields novel insights into neural mechanisms underlying sensorimotor coordination. In contrast to networks supporting comparatively simple behavior, networks supporting rich adaptive behavior show a higher density of causal interactions, as well as a stronger causal flow from sensory inputs to motor outputs. They also show different arrangements of 'causal sources' and 'causal sinks': nodes that differentially affect, or are affected by, the remainder of the network. Finally, analysis of causal connectivity can predict the functional consequences of network lesions. These results suggest that causal connectivity analysis may have useful applications in the analysis of neural dynamics

    An example of the stochastic dynamics of a causal set

    Full text link
    An example of a discrete pregeometry on a microscopic scale is introduced. The model is a directed dyadic acyclic graph. This is the particular case of a causal set. The particles in this model must be self-organized repetitive structures. The dynamics of this model is a stochastic sequential growth dynamics. New vertexes are added one by one. The probability of this addition depends on the structure of existed graph. The particular case of the dynamics is considered. The numerical simulation provides some symptoms of self-organization.Comment: 7 pages, 5 figures, work presented at the conference "Foundations of Probability and Physics-6" (FPP6) held on 12-15 June 2011 at the Linnaeus University, V\"axj\"o, Swede

    Network Cosmology

    Full text link
    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology

    Topological reversibility and causality in feed-forward networks

    Full text link
    Systems whose organization displays causal asymmetry constraints, from evolutionary trees to river basins or transport networks, can be often described in terms of directed paths (causal flows) on a discrete state space. Such a set of paths defines a feed-forward, acyclic network. A key problem associated with these systems involves characterizing their intrinsic degree of path reversibility: given an end node in the graph, what is the uncertainty of recovering the process backwards until the origin? Here we propose a novel concept, \textit{topological reversibility}, which rigorously weigths such uncertainty in path dependency quantified as the minimum amount of information required to successfully revert a causal path. Within the proposed framework we also analytically characterize limit cases for both topologically reversible and maximally entropic structures. The relevance of these measures within the context of evolutionary dynamics is highlighted.Comment: 9 pages, 3 figure
    • …
    corecore