3,672 research outputs found

    Cauchy completeness in elementary logic

    Get PDF
    The inverse of the distance between two structures A not equal B of finite type sis naturally measured by the smallest integer q such that a sentence of quantifier rank q-1 is satisfied by A but not by B. In this way the space Str of structures of type tau is equipped with a pseudometric. The induced topology coincides with the elementary topology of Str(tau). Using the rudiments of the theory of uniform spaces, in this elementary note we prove the convergence of every Cauchy net of structures, for any type tau.6141153115

    Tameness in generalized metric structures

    Full text link
    We broaden the framework of metric abstract elementary classes (mAECs) in several essential ways, chiefly by allowing the metric to take values in a well-behaved quantale. As a proof of concept we show that the result of Boney and Zambrano on (metric) tameness under a large cardinal assumption holds in this more general context. We briefly consider a further generalization to partial metric spaces, and hint at connections to classes of fuzzy structures, and structures on sheaves

    On the Cauchy Completeness of the Constructive Cauchy Reals

    Full text link
    It is consistent with constructive set theory (without Countable Choice, clearly) that the Cauchy reals (equivalence classes of Cauchy sequences of rationals) are not Cauchy complete. Related results are also shown, such as that a Cauchy sequence of rationals may not have a modulus of convergence, and that a Cauchy sequence of Cauchy sequences may not converge to a Cauchy sequence, among others

    The reals as rational Cauchy filters

    Full text link
    We present a detailed and elementary construction of the real numbers from the rational numbers a la Bourbaki. The real numbers are defined to be the set of all minimal Cauchy filters in Q\mathbb{Q} (where the Cauchy condition is defined in terms of the absolute value function on Q\mathbb{Q}) and are proven directly, without employing any of the techniques of uniform spaces, to form a complete ordered field. The construction can be seen as a variant of Bachmann's construction by means of nested rational intervals, allowing for a canonical choice of representatives

    Cauchy, infinitesimals and ghosts of departed quantifiers

    Get PDF
    Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson's frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz's distinction between assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robinson's framework, while Leibniz's law of homogeneity with the implied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide parallel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz's infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Euler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infinite exponent. Such procedures have immediate hyperfinite analogues in Robinson's framework, while in a Weierstrassian framework they can only be reinterpreted by means of paraphrases departing significantly from Euler's own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson's framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of departed quantifiers in his work. Cauchy's procedures in the context of his 1853 sum theorem (for series of continuous functions) are more readily understood from the viewpoint of Robinson's framework, where one can exploit tools such as the pointwise definition of the concept of uniform convergence. Keywords: historiography; infinitesimal; Latin model; butterfly modelComment: 45 pages, published in Mat. Stu

    Stevin numbers and reality

    Full text link
    We explore the potential of Simon Stevin's numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with arXiv:1104.0375, arXiv:1108.2885, arXiv:1108.420
    • …
    corecore