466 research outputs found

    Noninvasive neural decoding of overt and covert hand movement

    Get PDF
    It is generally assumed that the signal-to-noise ratio and information content of neural data acquired noninvasively via magnetoencephalography (MEG) or scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multi-joint movements of the upper limb. If valid, this assumption could severely limit the practical usage of noninvasive signals in brain-computer interface (BCI) systems aimed at continuous complex control of arm-like prostheses for movement impaired persons. Fortunately this dissertation research casts doubt on the veracity of this assumption by extracting continuous hand kinematics from MEG signals collected during a 2D center-out drawing task (Bradberry et al. 2009, NeuroImage, 47:1691-700) and from EEG signals collected during a 3D center-out reaching task (Bradberry et al. 2010, Journal of Neuroscience, 30:3432-7). In both studies, multiple regression was performed to find a matrix that mapped past and current neural data from multiple sensors to current hand kinematic data (velocity). A novel method was subsequently devised that incorporated the weights of the mapping matrix and the standardized low resolution electromagnetic tomography (sLORETA) software to reveal that the brain sources that encoded hand kinematics in the MEG and EEG studies were corroborated by more traditional studies that required averaging across trials and/or subjects. Encouraged by the favorable results of these off-line decoding studies, a BCI system was developed for on-line decoding of covert movement intentions that provided users with real-time visual feedback of the decoder output. Users were asked to use only their thoughts to move a cursor to acquire one of four targets on a computer screen. With only one training session, subjects were able to accomplish this task. The promising results of this dissertation research significantly advance the state-of-the-art in noninvasive BCI systems

    Neuro-cognitive and social components of dyadic motor interactions revealed by the kinematics of a joint-grasping task

    Get PDF
    This thesis describes a PhD project is based on the notion that we live our whole life dipped into an interactive social environment where we observe and act together with others and where our behavior is influenced by first sight impressions, social categorizations and stereotypes which automatically and unavoidably arise during interactions. Nevertheless, the bidirectional impact of interpersonal coding on dyadic motor interactions has never been directly investigated. Moreover, the neurocognitive bases of social interaction are still poorly understood. In particular, in every-day dyadic encounters we usually interact with others in non-imitative fashions (Sebanz et al. 2006), challenging the hypothesis of a direct matching between action observation and action execution within one system (“common coding approach”, Prinz 1997), which is instead supported by neurophysiological data on the so called “mirror neurons”(Rizzolatti and Sinigaglia 2010) which fire both during action execution and observation of similar actions performed by others. Suggestion is made that what characterizes joint action is the presence of a common goal (i.e. the “shared” goal, Butterfill 2012) which organizes individuals’ behaviour and channel simulative processes. During her PhD, Lucia Sacheli developed a novel interactive scenario able to investigate face-to-face dyadic interactions within a naturalistic and yet controlled experimental environment, with the aim to build a more coherent model of the role of simulative mechanisms during social interaction and on the role of socio-emotional variables in modulating these processes. This scenario required pairs of participants to reciprocally coordinate their reach-to-grasp movements and perform on-line mutual adjustments in time and space in order to fulfill a common (motor) goal. So far, she demonstrated by means of kinematic data analysis that simulation of the partner’s movement is task-dependent (Sacheli et al. 2013) and modulated by the interpersonal relationship linking co-agents (Sacheli et al. 2012) and by social stereotypes as ethnic biases (Sacheli et al. under review). Moreover, she used the same scenario to investigate the different contribution of the parietal and frontal nodes of the fronto-parietal “mirror” network during joint-action by means of Transcranial Magnetic Stimulation combined with analysis of kinematics

    Neuro-cognitive and social components of dyadic motor interactions revealed by the kinematics of a joint-grasping task

    Get PDF
    This thesis describes a PhD project is based on the notion that we live our whole life dipped into an interactive social environment where we observe and act together with others and where our behavior is influenced by first sight impressions, social categorizations and stereotypes which automatically and unavoidably arise during interactions. Nevertheless, the bidirectional impact of interpersonal coding on dyadic motor interactions has never been directly investigated. Moreover, the neurocognitive bases of social interaction are still poorly understood. In particular, in every-day dyadic encounters we usually interact with others in non-imitative fashions (Sebanz et al. 2006), challenging the hypothesis of a direct matching between action observation and action execution within one system (“common coding approach”, Prinz 1997), which is instead supported by neurophysiological data on the so called “mirror neurons”(Rizzolatti and Sinigaglia 2010) which fire both during action execution and observation of similar actions performed by others. Suggestion is made that what characterizes joint action is the presence of a common goal (i.e. the “shared” goal, Butterfill 2012) which organizes individuals’ behaviour and channel simulative processes. During her PhD, Lucia Sacheli developed a novel interactive scenario able to investigate face-to-face dyadic interactions within a naturalistic and yet controlled experimental environment, with the aim to build a more coherent model of the role of simulative mechanisms during social interaction and on the role of socio-emotional variables in modulating these processes. This scenario required pairs of participants to reciprocally coordinate their reach-to-grasp movements and perform on-line mutual adjustments in time and space in order to fulfill a common (motor) goal. So far, she demonstrated by means of kinematic data analysis that simulation of the partner’s movement is task-dependent (Sacheli et al. 2013) and modulated by the interpersonal relationship linking co-agents (Sacheli et al. 2012) and by social stereotypes as ethnic biases (Sacheli et al. under review). Moreover, she used the same scenario to investigate the different contribution of the parietal and frontal nodes of the fronto-parietal “mirror” network during joint-action by means of Transcranial Magnetic Stimulation combined with analysis of kinematics

    1st EFORT European Consensus: Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices

    Get PDF
    Innovations in Orthopaedics and Traumatology have contributed to the achievement of a high-quality level of care in musculoskeletal disorders and injuries over the past decades. The applications of new implants as well as diagnostic and therapeutic techniques in addition to implementation of clinical research, have significantly improved patient outcomes, reduced complication rates and length of hospital stay in many areas. However, the regulatory framework is extensive, and there is a lack of understanding and clarity in daily practice what the meaning of clinical & pre‐clinical evidence as required by the MDR is. Thus, understanding and clarity are of utmost importance for introduction of new implants and implant-related instrumentation in combination with surgical technique to ensure a safe use of implants and treatment of patients. Therefore EFORT launched IPSI, The Implant and Patient Safety Initiative, which starting from an inaugural workshop in 2021 issued a set of recommendations, notably through a subsequent Delphi Process involving the National Member Societies of EFORT, European Specialty Societies as well as International Experts. These recommendations provide surgeons, researchers, implant manufacturers as well as patients and health authorities with a consensus of the development, implementation, and dissemination of innovation in the field of arthroplasty. The intended key outcomes of this 1st EFORT European Consensus on “Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices”are consented, practical pathways to maintain innovation and optimisation of orthopaedic products and workflows within the boundaries of MDR 2017/745. Open Access practical guidelines based on adequate, state of the art pre-clinical and clinical evaluation methodologies for the introduction of joint replacements and implant-related instrumentation shall provide hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, Notified Bodies but also for National Institutes and authorities, patient representatives and further stakeholders. We would like to acknowledge and thank the Scientific Committee members, all International Expert Delegates, the Delegates from European National & Specialty Societies and the Editorial Team for their outstanding contributions and support during this EFORT European Consensus

    Event Structure of Resultatives in ASL

    Get PDF
    The relationship between the duration and telicity of the causing predicate and the gradability and standard of comparison of the resultant predicate in resultative constructions in American Sign Language (ASL) is investigated. Two homomorphic accounts of resultative constructions are considered, the feature-based approach of Beavers (2008), and the compositional approach of Ramchand (2008). The analysis utilizes morpho-phonological and semantics interface properties in ASL in order to discriminate between the two approaches. These properties are expressed by the Visibility Hypothesis (VH) in Wilbur, Malaia, and Shay (2012), which posits that the ends of semantic scales are phonologically marked in ASL in particular, but also in sign languages more generally. It is concluded that the compositional approach of Ramchand (2008) better accounts for the data

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Human-Robot Collaboration in Automotive Industry

    Get PDF
    Human–Robot Collaboration is a new trend in the field of industrial and service. Application of human-robot-collaboration techniques in automotive industries has many advantages on productivity, production quality and workers’ ergonomic; however, workers’ safety aspects play the vital role during this collaboration. Previously, the machine is allowed to be at automatic work only if operators are out of its workspace but today collaborative robots provide the opportunity to establish the human robot cooperation. In this thesis, efforts have been made to present innovative solutions for using human-robot collaboration to develop a manufacturing cell. These solutions are not only used to facilitate the operator working with collaborative robots but also consider the worker safety and ergonomic. After proposing different solutions for improving the safety of operations during the collaboration with industrial robots, the efficiency of the solutions is tested in both laboratory and virtual environments. In this research, firstly, Analytic Hierarchy Process (AHP) has been used as a potential decision maker to prove the efficiency of human-robot collaboration system over the manual one. In the second step, detailed task decomposition has been done using Hierarchical Task Analysis (HTA) to allocate operational tasks to human and robot reducing the chance of duty interference. In the International Organization of Standardization's technical specification 15066 on collaborative robot safety four methodologies have been proposed to reduce the risk of injury in the work area. The four methods implied in ISO/TS 15066 are safety-rated monitored stop (SMS), hand-guided (HG), speed and separation monitoring (SSM) and power force limiting (PFL). SMS method reduces the risk of operator’s injury by stopping the robot motion whenever the operator is in the collaborative workspace. HG method reduces the chance of operator’s injury by providing the possibility of having control over the robot motion at all times in the workstation using emergency system or enabling device. The SSM method determines the minimum protective distance between a robot and an operator in the collaborative workspace, below which the robot will stop any kind of motion and PFL method reduces the momentum of a robot in a way that contact between an operator and the robot will not cause any injury. After determining the requirements and specifications of hybrid assembly cell, few of the above-mentioned methods for evaluating the safety of human-robot-collaboration procedure have been tasted in the laboratory environment. Due to the lack of safety camera (sensors) in the laboratory workstation, the ISO methods such as SSM, that needs sensors in the workstation, have been modeled in virtual environment to evaluate different scenario of human-robot-interaction and feasibility of the assembly process. Implementing different scenarios of ISO methods in hybrid assembly workstation not only improves the operator safety who is in interaction with the collaborative robot but also improves the worker ergonomic during the performing of repetitive heavy tasks
    • 

    corecore