49 research outputs found

    Categorified cyclic operads

    Get PDF
    In this paper, we introduce a notion of categorified cyclic operad for set-based cyclic operads with symmetries. Our categorification is obtained by relaxing defining axioms of cyclic operads to isomorphisms and by formulating coherence conditions for these isomorphisms. The coherence theorem that we prove has the form "all diagrams of canonical isomorphisms commute". Our coherence results come in two flavours, corresponding to the "entries-only" and "exchangeable-output" definitions of cyclic operads. Our proof of coherence in the entries-only style is of syntactic nature and relies on the coherence of categorified non-symmetric operads established by Do\v{s}en and Petri\'c. We obtain the coherence in the exchangeable-output style by "lifting" the equivalence between entries-only and exchangeable-output cyclic operads, set up by the second author. Finally, we show that a generalisation of the structure of profunctors of B\' enabou provides an example of categorified cyclic operad, and we exploit the coherence of categorified cyclic operads in proving that the Feynman category for cyclic operads, due to Kaufmann and Ward, admits an odd version.Comment: 57 page

    Crossed simplicial groups and structured surfaces

    Full text link
    We propose a generalization of the concept of a Ribbon graph suitable to provide combinatorial models for marked surfaces equipped with a G-structure. Our main insight is that the necessary combinatorics is neatly captured in the concept of a crossed simplicial group as introduced, independently, by Krasauskas and Fiedorowicz-Loday. In this context, Connes' cyclic category leads to Ribbon graphs while other crossed simplicial groups naturally yield different notions of structured graphs which model unoriented, N-spin, framed, etc, surfaces. Our main result is that structured graphs provide orbicell decompositions of the respective G-structured moduli spaces. As an application, we show how, building on our theory of 2-Segal spaces, the resulting theory can be used to construct categorified state sum invariants of G-structured surfaces.Comment: 86 pages, v2: revised versio
    corecore