492 research outputs found

    Fuzzy concept analysis for semantic knowledge extraction

    Get PDF
    2010 - 2011Availability of controlled vocabularies, ontologies, and so on is enabling feature to provide some added values in terms of knowledge management. Nevertheless, the design, maintenance and construction of domain ontologies are a human intensive and time consuming task. The Knowledge Extraction consists of automatic techniques aimed to identify and to define relevant concepts and relations of the domain of interest by analyzing structured (relational databases, XML) and unstructured (text, documents, images) sources. Specifically, methodology for knowledge extraction defined in this research work is aimed at enabling automatic ontology/taxonomy construction from existing resources in order to obtain useful information. For instance, the experimental results take into account data produced with Web 2.0 tools (e.g., RSS-Feed, Enterprise Wiki, Corporate Blog, etc.), text documents, and so on. Final results of Knowledge Extraction methodology are taxonomies or ontologies represented in a machine oriented manner by means of semantic web technologies, such as: RDFS, OWL and SKOS. The resulting knowledge models have been applied to different goals. On the one hand, the methodology has been applied in order to extract ontologies and taxonomies and to semantically annotate text. On the other hand, the resulting ontologies and taxonomies are exploited in order to enhance information retrieval performance and to categorize incoming data and to provide an easy way to find interesting resources (such as faceted browsing). Specifically, following objectives have been addressed in this research work: Ontology/Taxonomy Extraction: that concerns to automatic extraction of hierarchical conceptualizations (i.e., taxonomies) and relations expressed by means typical description logic constructs (i.e., ontologies). Information Retrieval: definition of a technique to perform concept-based the retrieval of information according to the user queries. Faceted Browsing: in order to automatically provide faceted browsing capabilities according to the categorization of the extracted contents. Semantic Annotation: definition of a text analysis process, aimed to automatically annotate subjects and predicates identified. The experimental results have been obtained in some application domains: e-learning, enterprise human resource management, clinical decision support system. Future challenges go in the following directions: investigate approaches to support ontology alignment and merging applied to knowledge management.X n.s

    Sparsity-aware neural user behavior modeling in online interaction platforms

    Get PDF
    Modern online platforms offer users an opportunity to participate in a variety of content-creation, social networking, and shopping activities. With the rapid proliferation of such online services, learning data-driven user behavior models is indispensable to enable personalized user experiences. Recently, representation learning has emerged as an effective strategy for user modeling, powered by neural networks trained over large volumes of interaction data. Despite their enormous potential, we encounter the unique challenge of data sparsity for a vast majority of entities, e.g., sparsity in ground-truth labels for entities and in entity-level interactions (cold-start users, items in the long-tail, and ephemeral groups). In this dissertation, we develop generalizable neural representation learning frameworks for user behavior modeling designed to address different sparsity challenges across applications. Our problem settings span transductive and inductive learning scenarios, where transductive learning models entities seen during training and inductive learning targets entities that are only observed during inference. We leverage different facets of information reflecting user behavior (e.g., interconnectivity in social networks, temporal and attributed interaction information) to enable personalized inference at scale. Our proposed models are complementary to concurrent advances in neural architectural choices and are adaptive to the rapid addition of new applications in online platforms. First, we examine two transductive learning settings: inference and recommendation in graph-structured and bipartite user-item interactions. In chapter 3, we formulate user profiling in social platforms as semi-supervised learning over graphs given sparse ground-truth labels for node attributes. We present a graph neural network framework that exploits higher-order connectivity structures (network motifs) to learn attributed structural roles of nodes that identify structurally similar nodes with co-varying local attributes. In chapter 4, we design neural collaborative filtering models for few-shot recommendations over user-item interactions. To address item interaction sparsity due to heavy-tailed distributions, our proposed meta-learning framework learns-to-recommend few-shot items by knowledge transfer from arbitrary base recommenders. We show that our framework consistently outperforms state-of-art approaches on overall recommendation (by 5% Recall) while achieving significant gains (of 60-80% Recall) for tail items with fewer than 20 interactions. Next, we explored three inductive learning settings: modeling spread of user-generated content in social networks; item recommendations for ephemeral groups; and friend ranking in large-scale social platforms. In chapter 5, we focus on diffusion prediction in social networks where a vast population of users rarely post content. We introduce a deep generative modeling framework that models users as probability distributions in the latent space with variational priors parameterized by graph neural networks. Our approach enables massive performance gains (over 150% recall) for users with sparse activities while being faster than state-of-the-art neural models by an order of magnitude. In chapter 6, we examine item recommendations for ephemeral groups with limited or no historical interactions together. To overcome group interaction sparsity, we present self-supervised learning strategies that exploit the preference co-variance in observed group memberships for group recommender training. Our framework achieves significant performance gains (over 30% NDCG) over prior state-of-the-art group recommendation models. In chapter 7, we introduce multi-modal inference with graph neural networks that captures knowledge from multiple feature modalities and user interactions for multi-faceted friend ranking. Our approach achieves notable higher performance gains for critical populations of less-active and low degree users

    Social Relations and Methods in Recommender Systems: A Systematic Review

    Get PDF
    With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user's historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations

    Principles to Design Smart Physical Objects as Adaptive Recommenders

    Get PDF
    Recommenders have proven to be useful means to support people in their activities and in making decisions. They evolved from online recommenders to context-aware and ubiquitous recommenders. Moving forward along this line, this paper introduces the new emerging class of smart physical recommenders: context-aware recommender systems that are embedded into physical everyday objects. This paper describes the features of these systems and presents a conceptual model to design them, by analyzing a number of issues that have to be addressed by a designer and discussing the consequences of different design choices with their impact on the smartness of the designed object. The model is structured in a number of layers corresponding to different conceptual design phases in which different requirements are analyzed. The contribution of this paper is to discuss and provide design guidelines for a new rising class of recommenders that combine the features of intelligent agents, cyber-physical objects, and recommender-support systems. The description of the model is complemented by an exemplary analysis of its application

    Security Enhanced Applications for Information Systems

    Get PDF
    Every day, more users access services and electronically transmit information which is usually disseminated over insecure networks and processed by websites and databases, which lack proper security protection mechanisms and tools. This may have an impact on both the users’ trust as well as the reputation of the system’s stakeholders. Designing and implementing security enhanced systems is of vital importance. Therefore, this book aims to present a number of innovative security enhanced applications. It is titled “Security Enhanced Applications for Information Systems” and includes 11 chapters. This book is a quality guide for teaching purposes as well as for young researchers since it presents leading innovative contributions on security enhanced applications on various Information Systems. It involves cases based on the standalone, network and Cloud environments

    Semantically-enhanced recommendations in cultural heritage

    Get PDF
    In the Web 2.0 environment, institutes and organizations are starting to open up their previously isolated and heterogeneous collections in order to provide visitors with maximal access. Semantic Web technologies act as instrumental in integrating these rich collections of metadata by defining ontologies which accommodate different representation schemata and inconsistent naming conventions over the various vocabularies. Facing the large amount of metadata with complex semantic structures, it is becoming more and more important to support visitors with a proper selection and presentation of information. In this context, the Dutch Science Foundation (NWO) funded the Cultural Heritage Information Personalization (CHIP) project in early 2005, as part of the Continuous Access to Cultural Heritage (CATCH) program in the Netherlands. It is a collaborative project between the Rijksmuseum Amsterdam, the Eindhoven University of Technology and the Telematica Instituut. The problem statement that guides the research of this thesis is as follows: Can we support visitors with personalized access to semantically-enriched collections? To study this question, we chose cultural heritage (museums) as an application domain, and the semantically rich background knowledge about the museum collection provides a basis to our research. On top of it, we deployed user modeling and recommendation technologies in order to provide personalized services for museum visitors. Our main contributions are: (i) we developed an interactive rating dialog of artworks and art concepts for a quick instantiation of the CHIP user model, which is built as a specialization of FOAF and mapped to an existing event model ontology SEM; (ii) we proposed a hybrid recommendation algorithm, combining both explicit and implicit relations from the semantic structure of the collection. On the presentation level, we developed three tools for end-users: Art Recommender, Tour Wizard and Mobile Tour Guide. Following a user-centered design cycle, we performed a series of evaluations with museum visitors to test the effectiveness of recommendations using the rating dialog, different ways to build an optimal user model and the prediction accuracy of the hybrid algorithm. Chapter 1 introduces the research questions, our approaches and the outline of this thesis. Chapter 2 gives an overview of our work at the first stage. It includes (i) the semantic enrichment of the Rijksmuseum collection, which is mapped to three Getty vocabularies (ULAN, AAT, TGN) and the Iconclass thesaurus; (ii) the minimal user model ontology defined as a specialization of FOAF, which only stores user ratings at that time, (iii) the first implementation of the content-based recommendation algorithm in our first tool, the CHIP Art Recommender. Chapter 3 presents two other tools: Tour Wizard and Mobile Tour Guide. Based on the user's ratings, the Web-based Tour Wizard recommends museum tours consisting of recommended artworks that are currently available for museum exhibitions. The Mobile Tour Guide converts recommended tours to mobile devices (e.g. PDA) that can be used in the physical museum space. To connect users' various interactions with these tools, we made a conversion of the online user model stored in RDF into XML format which the mobile guide can parse, and in this way we keep the online and on-site user models dynamically synchronized. Chapter 4 presents the second generation of the Mobile Tour Guide with a real time routing system on different mobile devices (e.g. iPod). Compared with the first generation, it can adapt museum tours based on the user's ratings artworks and concepts, her/his current location in the physical museum and the coordinates of the artworks and rooms in the museum. In addition, we mapped the CHIP user model to an existing event model ontology SEM. Besides ratings, it can store additional user activities, such as following a tour and viewing artworks. Chapter 5 identifies a number of semantic relations within one vocabulary (e.g. a concept has a broader/narrower concept) and across multiple vocabularies (e.g. an artist is associated to an art style). We applied all these relations as well as the basic artwork features in content-based recommendations and compared all of them in terms of usefulness. This investigation also enables us to look at the combined use of artwork features and semantic relations in sequence and derive user navigation patterns. Chapter 6 defines the task of personalized recommendations and decomposes the task into a number of inference steps for ontology-based recommender systems, from a perspective of knowledge engineering. We proposed a hybrid approach combining both explicit and implicit recommendations. The explicit relations include artworks features and semantic relations with preliminary weights which are derived from the evaluation in Chapter 5. The implicit relations are built between art concepts based on instance-based ontology matching. Chapter 7 gives an example of reusing user interaction data generated by one application into another one for providing cross-application recommendations. In this example, user tagging about cultural events, gathered by iCITY, is used to enrich the user model for generating content-based recommendations in the CHIP Art Recommender. To realize full tagging interoperability, we investigated the problems that arise in mapping user tags to domain ontologies, and proposed additional mechanisms, such as the use of SKOS matching operators to deal with the possible mis-alignment of tags and domain-specific ontologies. We summarized to what extent the problem statement and each of the research questions are answered in Chapter 8. We also discussed a number of limitations in our research and looked ahead at what may follow as future work
    • …
    corecore