198 research outputs found

    Categorical Abstract Rewriting Systems and Functoriality of Graph Transformation

    Get PDF
    Rewriting systems are often defined as binary relations over a given set of objects. This simple definition is used to describe various properties of rewriting such as termination, confluence, normal forms etc. In this paper, we introduce a new notion of abstract rewriting in the framework of categories. Then, we define the functoriality property of rewriting systems. This property is sometimes called vertical composition. We show that most of graph transformation systems are functorial and provide a counter-example of graph transformation systems which is not functorial

    Rewriting Abstract Structures: Materialization Explained Categorically

    Get PDF
    The paper develops an abstract (over-approximating) semantics for double-pushout rewriting of graphs and graph-like objects. The focus is on the so-called materialization of left-hand sides from abstract graphs, a central concept in previous work. The first contribution is an accessible, general explanation of how materializations arise from universal properties and categorical constructions, in particular partial map classifiers, in a topos. Second, we introduce an extension by enriching objects with annotations and give a precise characterization of strongest post-conditions, which are effectively computable under certain assumptions

    Diagrammatic Semantics for Digital Circuits

    Get PDF
    We introduce a general diagrammatic theory of digital circuits, based on connections between monoidal categories and graph rewriting. The main achievement of the paper is conceptual, filling a foundational gap in reasoning syntactically and symbolically about a large class of digital circuits (discrete values, discrete delays, feedback). This complements the dominant approach to circuit modelling, which relies on simulation. The main advantage of our symbolic approach is the enabling of automated reasoning about parametrised circuits, with a potentially interesting new application to partial evaluation of digital circuits. Relative to the recent interest and activity in categorical and diagrammatic methods, our work makes several new contributions. The most important is establishing that categories of digital circuits are Cartesian and admit, in the presence of feedback expressive iteration axioms. The second is producing a general yet simple graph-rewrite framework for reasoning about such categories in which the rewrite rules are computationally efficient, opening the way for practical applications

    Deriving Bisimulation Congruences: A 2-Categorical Approach

    Get PDF
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Deriving Bisimulation Congruences using 2-Categories

    No full text
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs

    Coherent presentations of Artin monoids

    Get PDF
    We compute coherent presentations of Artin monoids, that is presentations by generators, relations, and relations between the relations. For that, we use methods of higher-dimensional rewriting that extend Squier's and Knuth-Bendix's completions into a homotopical completion-reduction, applied to Artin's and Garside's presentations. The main result of the paper states that the so-called Tits-Zamolodchikov 3-cells extend Artin's presentation into a coherent presentation. As a byproduct, we give a new constructive proof of a theorem of Deligne on the actions of an Artin monoid on a category
    corecore