77 research outputs found

    Malware detection at runtime for resource-constrained mobile devices: data-driven approach

    Get PDF
    The number of smart and connected mobile devices is increasing, bringing enormous possibilities to users in various domains and transforming everything that we get in touch with into smart. Thus, we have smart watches, smart phones, smart homes, and finally even smart cities. Increased smartness of mobile devices means that they contain more valuable information about their users, more decision making capabilities, and more control over sometimes even life-critical systems. Although, on one side, all of these are necessary in order to enable mobile devices maintain their main purpose to help and support people, on the other, it opens new vulnerabilities. Namely, with increased number and volume of smart devices, also the interest of attackers to abuse them is rising, making their security one of the main challenges. The main mean that the attackers use in order to abuse mobile devices is malicious software, shortly called malware. One way to protect against malware is by using static analysis, that investigates the nature of software by analyzing its static features. However, this technique detects well only known malware and it is prone to obfuscation, which means that it is relatively easy to create a new malicious sample that would be able to pass the radar. Thus, alone, is not powerful enough to protect the users against increasing malicious attacks. The other way to cope with malware is through dynamic analysis, where the nature of the software is decided based on its behavior during its execution on a device. This is a promising solution, because while the code of the software can be easily changed to appear as new, the same cannot be done with ease with its behavior when being executed. However, in order to achieve high accuracy dynamic analysis usually requires computational resources that are beyond suitable for battery-operated mobile devices. This is further complicated if, in addition to detecting the presence of malware, we also want to understand which type of malware it is, in order to trigger suitable countermeasures. Finally, the decisions on potential infections have to happen early enough, to guarantee minimal exposure to the attacks. Fulfilling these requirements in a mobile, battery-operated environments is a challenging task, for which, to the best of our knowledge, a suitable solution is not yet proposed. In this thesis, we pave the way towards such a solution by proposing a dynamic malware detection system that is able to early detect malware that appears at runtime and that provides useful information to discriminate between diverse types of malware while taking into account limited resources of mobile devices. On a mobile device we monitor a set of the representative features for presence of malware and based on them we trigger an alarm if software infection is observed. When this happens, we analyze a set of previously stored information relevant for malware classification, in order to understand what type of malware is being executed. In order to make the detection efficient and suitable for resource-constrained environments of mobile devices, we minimize the set of observed system parameters to only the most informative ones for both detection and classification. Additionally, since sampling period of monitoring infrastructure is directly connected to the power consumption, we take it into account as an important parameter of the development of the detection system. In order to make detection effective, we use dynamic features related to memory, CPU, system calls and network as they reflect well the behavior of a system. Our experiments show that the monitoring with a sampling period of eight seconds gives a good trade-off between detection accuracy, detection time and consumed power. Using it and by monitoring a set of only seven dynamic features (six related to the behavior of memory and one of CPU), we are able to provide a detection solution that satisfies the initial requirements and to detect malware at runtime with F- measure of 0.85, within 85.52 seconds of its execution, and with consumed average power of 20mW. Apart from observed features containing enough information to discriminate between malicious and benign applications, our results show that they can also be used to discriminate between diverse behavior of malware, reflected in different malware families. Using small number of features we are able to identify the presence of the malicious records from the considered family with precision of up to 99.8%. In addition to the standalone use of the proposed detection solution, we have also used it in a hybrid scenario where the applications were first analyzed by a static method, and it was able to detect correctly all the malware previously undetected by static analysis with false positive rate of 3.81% and average detection time of 44.72s. The method, we have designed, tested and validated, has been applied on a smartphone running on Android Operating System. However, since in the design of this method efficient usage of available computational resources was one of our main criteria, we are confident that the method as such can be applied also on the other battery-operated mobile devices of Internet of Things, in order to provide an effective and efficient system able to counter the ever-increasing and ever-evolving number and a variety of malicious attacks

    Social Fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling

    Full text link
    Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of lightweight account characteristics

    The Evolution of Android Malware and Android Analysis Techniques

    Get PDF
    Publisher policy: author can archive post-print on institutional repository. Publisher's version/PDF cannot be used. Publisher copyright and source must be acknowledged. Must link to publisher version with statement that this is the definitive version and DOI. Must state that version on repository is the authors versio

    Network-based detection of malicious activities - a corporate network perspective

    Get PDF

    Detecting Android Malware Leveraging Text Semantics of Network Flows

    Get PDF
    The emergence of malicious apps poses a serious threat to the Android platform. Most types of mobile malware rely on network interface to coordinate operations, steal users' private information, and launch attack activities. In this paper, we propose an effective and automatic malware detection method using the text semantics of network traffic. In particular, we consider each HTTP flow generated by mobile apps as a text document, which can be processed by natural language processing to extract text-level features. Then, we use the text semantic features of network traffic to develop an effective malware detection model. In an evaluation using 31 706 benign flows and 5258 malicious flows, our method outperforms the existing approaches, and gets an accuracy of 99.15%. We also conduct experiments to verify that the method is effective in detecting newly discovered malware, and requires only a few samples to achieve a good detection result. When the detection model is applied to the real environment to detect unknown applications in the wild, the experimental results show that our method performs significantly better than other popular anti-virus scanners with a detection rate of 54.81%. Our method also reveals certain malware types that can avoid the detection of anti-virus scanners. In addition, we design a detection system on encrypted traffic for bring-your-own-device enterprise network, home network, and 3G/4G mobile network. The detection model is integrated into the system to discover suspicious network behaviors

    Getting to the root of the problem: A detailed comparison of kernel and user level data for dynamic malware analysis

    Get PDF
    Dynamic malware analysis is fast gaining popularity over static analysis since it is not easily defeated by evasion tactics such as obfuscation and polymorphism. During dynamic analysis it is common practice to capture the system calls that are made to better understand the behaviour of malware. There are several techniques to capture system calls, the most popular of which is a user-level hook. To study the effects of collecting system calls at different privilege levels and viewpoints, we collected data at a process-specific user-level using a virtualised sandbox environment and a system-wide kernel-level using a custom-built kernel driver. We then tested the performance of several state-of-the-art machine learning classifiers on the data. Random Forest was the best performing classifier with an accuracy of 95.2% for the kernel driver and 94.0% at a user-level. The combination of user and kernel level data gave the best classification results with an accuracy of 96.0% for Random Forest. This may seem intuitive but was hitherto not empirically demonstrated. Additionally, we observed that machine learning algorithms trained on data from the user-level tended to use the anti-debug/anti-vm features in malware to distinguish it from benignware. Whereas, when trained on data from our kernel driver, machine learning algorithms seemed to use the differences in the general behaviour of the system to make their prediction, which explains why they complement each other so well. Our results show that capturing data at different privilege levels will affect the classifier's ability to detect malware, with kernel-level providing more utility than user-level for malware classification. Despite this, there exist more established user-level tools than kernel-level tools, suggesting more research effort should be directed at kernel-level. In short, this paper provides the first objective, evidence-based comparison of user and kernel level data for the purposes of malware classification

    Emerging Security Threats in Modern Digital Computing Systems: A Power Management Perspective

    Get PDF
    Design of computing systems — from pocket-sized smart phones to massive cloud based data-centers — have one common daunting challenge : minimizing the power consumption. In this effort, power management sector is undergoing a rapid and profound transformation to promote clean and energy proportional computing. At the hardware end of system design, there is proliferation of specialized, feature rich and complex power management hardware components. Similarly, in the software design layer complex power management suites are growing rapidly. Concurrent to this development, there has been an upsurge in the integration of third-party components to counter the pressures of shorter time-to-market. These trends collectively raise serious concerns about trust and security of power management solutions. In recent times, problems such as overheating, performance degradation and poor battery life, have dogged the mobile devices market, including the infamous recall of Samsung Note 7. Power outage in the data-center of a major airline left innumerable passengers stranded, with thousands of canceled flights costing over 100 million dollars. This research examines whether such events of unintentional reliability failure, can be replicated using targeted attacks by exploiting the security loopholes in the complex power management infrastructure of a computing system. At its core, this research answers an imminent research question: How can system designers ensure secure and reliable operation of third-party power management units? Specifically, this work investigates possible attack vectors, and novel non-invasive detection and defense mechanisms to safeguard system against malicious power attacks. By a joint exploration of the threat model and techniques to seamlessly detect and protect against power attacks, this project can have a lasting impact, by enabling the design of secure and cost-effective next generation hardware platforms
    • …
    corecore