2,916 research outputs found

    Recovery of Interdependent Networks

    Get PDF
    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy of nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ\gamma, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1−p1-p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ−p\gamma-p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot avoid the system collapse

    Mitigating Cascading Failures in Interdependent Power Grids and Communication Networks

    Get PDF
    In this paper, we study the interdependency between the power grid and the communication network used to control the grid. A communication node depends on the power grid in order to receive power for operation, and a power node depends on the communication network in order to receive control signals for safe operation. We demonstrate that these dependencies can lead to cascading failures, and it is essential to consider the power flow equations for studying the behavior of such interdependent networks. We propose a two-phase control policy to mitigate the cascade of failures. In the first phase, our control policy finds the non-avoidable failures that occur due to physical disconnection. In the second phase, our algorithm redistributes the power so that all the connected communication nodes have enough power for operation and no power lines overload. We perform a sensitivity analysis to evaluate the performance of our control policy, and show that our control policy achieves close to optimal yield for many scenarios. This analysis can help design robust interdependent grids and associated control policies.Comment: 6 pages, 9 figures, submitte

    Towards designing robust coupled networks

    Get PDF
    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy
    • …
    corecore