22,862 research outputs found

    Fluctuations of the Casimir-like force between two membrane inclusions

    Full text link
    Although Casimir forces are inseparable from their fluctuations, little is known about these fluctuations in soft matter systems. We use the membrane stress tensor to study the fluctuations of the membrane-mediated Casimir-like force. This method enables us to recover the Casimir force between two inclusions and to calculate its variance. We show that the Casimir force is dominated by its fluctuations. Furthermore, when the distance d between the inclusions is decreased from infinity, the variance of the Casimir force decreases as -1/d^2. This distance dependence shares a common physical origin with the Casimir force itself.Comment: 5 pages, 3 figure

    The Casimir force of Quantum Spring in the (D+1)-dimensional spacetime

    Full text link
    The Casimir effect for a massless scalar field on the helix boundary condition which is named as quantum spring is studied in our recent paper\cite{Feng}. In this paper, the Casimir effect of the quantum spring is investigated in (D+1)(D+1)-dimensional spacetime for the massless and massive scalar fields by using the zeta function techniques. We obtain the exact results of the Casimir energy and Casimir force for any DD, which indicate a Z2Z_2 symmetry of the two space dimensions. The Casimir energy and Casimir force have different expressions for odd and even dimensional space in the massless case but in both cases the force is attractive. In the case of odd-dimensional space, the Casimir energy density can be expressed by the Bernoulli numbers, while in the even case it can be expressed by the ζ\zeta-function. And we also show that the Casimir force has a maximum value which depends on the spacetime dimensions. In particular, for a massive scalar field, we found that the Casimir force varies as the mass of the field changes.Comment: 9 pages, 5 figures, v2, massive case added, refs. adde

    Three dimensional Casimir piston for massive scalar fields

    Full text link
    We consider Casimir force acting on a three dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy in the interior region and the exterior region separated by the piston. It is shown that the divergent term of the Casimir force acting on the piston due to the interior region cancels with that due to the exterior region, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a -- the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a41/a^4 when a0+a\to 0^+ and decays exponentially when aa\to \infty. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.Comment: 22 pages, 8 figure

    Casimir piston for massless scalar fields in three dimensions

    Full text link
    We study the Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in a three dimensional cavity with sides of arbitrary lengths a,ba,b and cc where aa is the plate separation. We obtain an exact expression for the Casimir force on the piston valid for any values of the three lengths. As in the electromagnetic case with perfect conductor conditions, we find that the Casimir force is negative (attractive) regardless of the values of aa, bb and cc. Though cases exist where the interior contributes a positive (repulsive) Casimir force, the total Casimir force on the piston is negative when the exterior contribution is included. We also obtain an alternative expression for the Casimir force that is useful computationally when the plate separation aa is large.Comment: 19 pages,3 figures; references updated and typos fixed to match published versio

    The Casimir Effect in the Presence of Compactified Universal Extra Dimensions

    Full text link
    The Casimir force in a system consisting of two parallel conducting plates in the presence of compactified universal extra dimensions (UXD) is analyzed. The Casimir force with UXDs differs from the force obtained without extra dimensions. A new power law for the Casimir force is derived. By comparison to experimental data the size R of the universal extra dimensions can be restricted to R < 10 nm for one extra dimension.Comment: 4 pages, 1 figure, error in polarizations corrected, Casimir Effect in 4D-limit reproduce

    Normal and lateral Casimir force: Advances and prospects

    Full text link
    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces can be considered as some kind of noncontact friction caused by zero-point oscillations of the electromagnetic field. Recent experiments and computations using the exact theory have demonstrated the role of diffraction-type effects in this phenomenon and the possibility to get asymmetric force profiles. Conclusion is made that the Casimir force may play important role in the operation of different devices on the nanoscale.Comment: 27 pages, 13 figures; Invited keynote lecture at the 2nd International Conference on Science of Friction, Ise-Shima, Mie, Japan, September 13-18, 2010; to appear in J. Phys.: Conf. Se
    corecore