1,357 research outputs found

    Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model

    Get PDF
    Computer simulators can be computationally intensive to run over a large number of input values, as required for optimization and various uncertainty quantification tasks. The standard paradigm for the design and analysis of computer experiments is to employ Gaussian random fields to model computer simulators. Gaussian process models are trained on input-output data obtained from simulation runs at various input values. Following this approach, we propose a sequential design algorithm, MICE (Mutual Information for Computer Experiments), that adaptively selects the input values at which to run the computer simulator, in order to maximize the expected information gain (mutual information) over the input space. The superior computational efficiency of the MICE algorithm compared to other algorithms is demonstrated by test functions, and a tsunami simulator with overall gains of up to 20% in that case

    An analytic comparison of regularization methods for Gaussian Processes

    Get PDF
    Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the variance zero at redundant points. However, pseudoinverse and nugget regularizations become equivalent as the nugget value vanishes. A measure for data-model discrepancy is proposed which serves for choosing a regularization technique.In the second part of the paper, a distribution-wise GP is introduced that interpolates Gaussian distributions instead of data points. Distribution-wise GP can be seen as an improved regularization method for GPs
    • …
    corecore