10,754 research outputs found

    Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable end-to-end approach to learning approximate Nash equilibria without prior domain knowledge. Our method combines fictitious self-play with deep reinforcement learning. When applied to Leduc poker, Neural Fictitious Self-Play (NFSP) approached a Nash equilibrium, whereas common reinforcement learning methods diverged. In Limit Texas Holdem, a poker game of real-world scale, NFSP learnt a strategy that approached the performance of state-of-the-art, superhuman algorithms based on significant domain expertise.Comment: updated version, incorporating conference feedbac

    Traditional Wisdom and Monte Carlo Tree Search Face-to-Face in the Card Game Scopone

    Get PDF
    We present the design of a competitive artificial intelligence for Scopone, a popular Italian card game. We compare rule-based players using the most established strategies (one for beginners and two for advanced players) against players using Monte Carlo Tree Search (MCTS) and Information Set Monte Carlo Tree Search (ISMCTS) with different reward functions and simulation strategies. MCTS requires complete information about the game state and thus implements a cheating player while ISMCTS can deal with incomplete information and thus implements a fair player. Our results show that, as expected, the cheating MCTS outperforms all the other strategies; ISMCTS is stronger than all the rule-based players implementing well-known and most advanced strategies and it also turns out to be a challenging opponent for human players.Comment: Preprint. Accepted for publication in the IEEE Transaction on Game

    Solving Games with Functional Regret Estimation

    Full text link
    We propose a novel online learning method for minimizing regret in large extensive-form games. The approach learns a function approximator online to estimate the regret for choosing a particular action. A no-regret algorithm uses these estimates in place of the true regrets to define a sequence of policies. We prove the approach sound by providing a bound relating the quality of the function approximation and regret of the algorithm. A corollary being that the method is guaranteed to converge to a Nash equilibrium in self-play so long as the regrets are ultimately realizable by the function approximator. Our technique can be understood as a principled generalization of existing work on abstraction in large games; in our work, both the abstraction as well as the equilibrium are learned during self-play. We demonstrate empirically the method achieves higher quality strategies than state-of-the-art abstraction techniques given the same resources.Comment: AAAI Conference on Artificial Intelligence 201
    • …
    corecore