16,032 research outputs found

    Individual and Domain Adaptation in Sentence Planning for Dialogue

    Full text link
    One of the biggest challenges in the development and deployment of spoken dialogue systems is the design of the spoken language generation module. This challenge arises from the need for the generator to adapt to many features of the dialogue domain, user population, and dialogue context. A promising approach is trainable generation, which uses general-purpose linguistic knowledge that is automatically adapted to the features of interest, such as the application domain, individual user, or user group. In this paper we present and evaluate a trainable sentence planner for providing restaurant information in the MATCH dialogue system. We show that trainable sentence planning can produce complex information presentations whose quality is comparable to the output of a template-based generator tuned to this domain. We also show that our method easily supports adapting the sentence planner to individuals, and that the individualized sentence planners generally perform better than models trained and tested on a population of individuals. Previous work has documented and utilized individual preferences for content selection, but to our knowledge, these results provide the first demonstration of individual preferences for sentence planning operations, affecting the content order, discourse structure and sentence structure of system responses. Finally, we evaluate the contribution of different feature sets, and show that, in our application, n-gram features often do as well as features based on higher-level linguistic representations

    Graph-based task libraries for robots: generalization and autocompletion

    Get PDF
    In this paper, we consider an autonomous robot that persists over time performing tasks and the problem of providing one additional task to the robot's task library. We present an approach to generalize tasks, represented as parameterized graphs with sequences, conditionals, and looping constructs of sensing and actuation primitives. Our approach performs graph-structure task generalization, while maintaining task ex- ecutability and parameter value distributions. We present an algorithm that, given the initial steps of a new task, proposes an autocompletion based on a recognized past similar task. Our generalization and auto- completion contributions are eective on dierent real robots. We show concrete examples of the robot primitives and task graphs, as well as results, with Baxter. In experiments with multiple tasks, we show a sig- nicant reduction in the number of new task steps to be provided

    Research in advanced formal theorem-proving techniques

    Get PDF
    The results are summarised of a project aimed at the design and implementation of computer languages to aid in expressing problem solving procedures in several areas of artificial intelligence including automatic programming, theorem proving, and robot planning. The principal results of the project were the design and implementation of two complete systems, QA4 and QLISP, and their preliminary experimental use. The various applications of both QA4 and QLISP are given
    • …
    corecore