7 research outputs found

    Using Case-Based Reasoning to Predict Marathon Performance and Recommend Tailored Training Plans

    Get PDF
    The 28th International Conference on Case-Based Reasoning (ICCP 2020), Salamanca, Spain (held online due to coronavirus outbreak), 8-12 June 2020Training for the marathon, especially a first marathon, is always a challenge. Many runners struggle to find the right balance between their workouts and their recovery, often leading to sub-optimal performance on race-day or even injury during training. We describe and evaluate a novel case-based reasoning system to help marathon runners as they train in two ways. First, it uses a case-base of training/workouts and race histories to predict future marathon times for a target runner, throughout their training program, helping runners to calibrate their progress and, ultimately, plan their race-day pacing. Second, the system recommends tailored training plans to runners, adapted for their current goal-time target, and based on the training plans of similar runners who have achieved this time. We evaluate the system using a dataset of more than 21,000 unique runners and 1.5 million training/workout sessions.Science Foundation IrelandInsight Research Centre2020-10-06 JG: PDF replaced with correct versio

    A Survey on Multi-Resident Activity Recognition in Smart Environments

    Full text link
    Human activity recognition (HAR) is a rapidly growing field that utilizes smart devices, sensors, and algorithms to automatically classify and identify the actions of individuals within a given environment. These systems have a wide range of applications, including assisting with caring tasks, increasing security, and improving energy efficiency. However, there are several challenges that must be addressed in order to effectively utilize HAR systems in multi-resident environments. One of the key challenges is accurately associating sensor observations with the identities of the individuals involved, which can be particularly difficult when residents are engaging in complex and collaborative activities. This paper provides a brief overview of the design and implementation of HAR systems, including a summary of the various data collection devices and approaches used for human activity identification. It also reviews previous research on the use of these systems in multi-resident environments and offers conclusions on the current state of the art in the field.Comment: 16 pages, to appear in Evolution of Information, Communication and Computing Systems (EICCS) Book Serie

    Building bridges for better machines : from machine ethics to machine explainability and back

    Get PDF
    Be it nursing robots in Japan, self-driving buses in Germany or automated hiring systems in the USA, complex artificial computing systems have become an indispensable part of our everyday lives. Two major challenges arise from this development: machine ethics and machine explainability. Machine ethics deals with behavioral constraints on systems to ensure restricted, morally acceptable behavior; machine explainability affords the means to satisfactorily explain the actions and decisions of systems so that human users can understand these systems and, thus, be assured of their socially beneficial effects. Machine ethics and explainability prove to be particularly efficient only in symbiosis. In this context, this thesis will demonstrate how machine ethics requires machine explainability and how machine explainability includes machine ethics. We develop these two facets using examples from the scenarios above. Based on these examples, we argue for a specific view of machine ethics and suggest how it can be formalized in a theoretical framework. In terms of machine explainability, we will outline how our proposed framework, by using an argumentation-based approach for decision making, can provide a foundation for machine explanations. Beyond the framework, we will also clarify the notion of machine explainability as a research area, charting its diverse and often confusing literature. To this end, we will outline what, exactly, machine explainability research aims to accomplish. Finally, we will use all these considerations as a starting point for developing evaluation criteria for good explanations, such as comprehensibility, assessability, and fidelity. Evaluating our framework using these criteria shows that it is a promising approach and augurs to outperform many other explainability approaches that have been developed so far.DFG: CRC 248: Center for Perspicuous Computing; VolkswagenStiftung: Explainable Intelligent System

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    Exploring attributes, sequences, and time in Recommender Systems: From classical to Point-of-Interest recommendation

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingenieria Informática. Fecha de lectura: 08-07-2021Since the emergence of the Internet and the spread of digital communications throughout the world, the amount of data stored on the Web has been growing exponentially. In this new digital era, a large number of companies have emerged with the purpose of ltering the information available on the web and provide users with interesting items. The algorithms and models used to recommend these items are called Recommender Systems. These systems are applied to a large number of domains, from music, books, or movies to dating or Point-of-Interest (POI), which is an increasingly popular domain where users receive recommendations of di erent places when they arrive to a city. In this thesis, we focus on exploiting the use of contextual information, especially temporal and sequential data, and apply it in novel ways in both traditional and Point-of-Interest recommendation. We believe that this type of information can be used not only for creating new recommendation models but also for developing new metrics for analyzing the quality of these recommendations. In one of our rst contributions we propose di erent metrics, some of them derived from previously existing frameworks, using this contextual information. Besides, we also propose an intuitive algorithm that is able to provide recommendations to a target user by exploiting the last common interactions with other similar users of the system. At the same time, we conduct a comprehensive review of the algorithms that have been proposed in the area of POI recommendation between 2011 and 2019, identifying the common characteristics and methodologies used. Once this classi cation of the algorithms proposed to date is completed, we design a mechanism to recommend complete routes (not only independent POIs) to users, making use of reranking techniques. In addition, due to the great di culty of making recommendations in the POI domain, we propose the use of data aggregation techniques to use information from di erent cities to generate POI recommendations in a given target city. In the experimental work we present our approaches on di erent datasets belonging to both classical and POI recommendation. The results obtained in these experiments con rm the usefulness of our recommendation proposals, in terms of ranking accuracy and other dimensions like novelty, diversity, and coverage, and the appropriateness of our metrics for analyzing temporal information and biases in the recommendations producedDesde la aparici on de Internet y la difusi on de las redes de comunicaciones en todo el mundo, la cantidad de datos almacenados en la red ha crecido exponencialmente. En esta nueva era digital, han surgido un gran n umero de empresas con el objetivo de ltrar la informaci on disponible en la red y ofrecer a los usuarios art culos interesantes. Los algoritmos y modelos utilizados para recomendar estos art culos reciben el nombre de Sistemas de Recomendaci on. Estos sistemas se aplican a un gran n umero de dominios, desde m usica, libros o pel culas hasta las citas o los Puntos de Inter es (POIs, en ingl es), un dominio cada vez m as popular en el que los usuarios reciben recomendaciones de diferentes lugares cuando llegan a una ciudad. En esta tesis, nos centramos en explotar el uso de la informaci on contextual, especialmente los datos temporales y secuenciales, y aplicarla de forma novedosa tanto en la recomendaci on cl asica como en la recomendaci on de POIs. Creemos que este tipo de informaci on puede utilizarse no s olo para crear nuevos modelos de recomendaci on, sino tambi en para desarrollar nuevas m etricas para analizar la calidad de estas recomendaciones. En una de nuestras primeras contribuciones proponemos diferentes m etricas, algunas derivadas de formulaciones previamente existentes, utilizando esta informaci on contextual. Adem as, proponemos un algoritmo intuitivo que es capaz de proporcionar recomendaciones a un usuario objetivo explotando las ultimas interacciones comunes con otros usuarios similares del sistema. Al mismo tiempo, realizamos una revisi on exhaustiva de los algoritmos que se han propuesto en el a mbito de la recomendaci o n de POIs entre 2011 y 2019, identi cando las caracter sticas comunes y las metodolog as utilizadas. Una vez realizada esta clasi caci on de los algoritmos propuestos hasta la fecha, dise~namos un mecanismo para recomendar rutas completas (no s olo POIs independientes) a los usuarios, haciendo uso de t ecnicas de reranking. Adem as, debido a la gran di cultad de realizar recomendaciones en el ambito de los POIs, proponemos el uso de t ecnicas de agregaci on de datos para utilizar la informaci on de diferentes ciudades y generar recomendaciones de POIs en una determinada ciudad objetivo. En el trabajo experimental presentamos nuestros m etodos en diferentes conjuntos de datos tanto de recomendaci on cl asica como de POIs. Los resultados obtenidos en estos experimentos con rman la utilidad de nuestras propuestas de recomendaci on en t erminos de precisi on de ranking y de otras dimensiones como la novedad, la diversidad y la cobertura, y c omo de apropiadas son nuestras m etricas para analizar la informaci on temporal y los sesgos en las recomendaciones producida
    corecore