9,280 research outputs found

    A strategic niche management approach for shaping bio-based economy in Europe

    Get PDF
    The goal of this paper is to investigate the transition towards a bio-based economy as part of a broader sustainable transition in Europe. To analyse the challenges and opportunities associated with the bio-based economy, we applied the Strategic Niche Management approach to investigate the drivers that boost the emergence of the bio-based economy, the factors hindering it, as well as institutional changes which are at the base of the socio-technological transition. Although considered as just one piece of the sustainability puzzle, the bio-based economy behaves as a socio-technical system on its own, providing valuable hints on systemic transitions

    Cascading Behaviour in Complex Soci-Technical Networks

    Get PDF
    Most human interactions today take place with the mediation of information and communications technology. This is extending the boundaries of interdependence: the group of reference, ideas and behaviour to which people are exposed is larger and less restricted to old geographical and cultural boundaries; but it is also providing more and better data with which to build more informative models on the effects of social interactions, amongst them, the way in which contagion and cascades diffuse in social networks. Online data are not only helping us gain deeper insights into the structural complexity of social systems, they are also illuminating the consequences of that complexity, especially around collective and temporal dynamics. This paper offers an overview of the models and applications that have been developed in what is still a nascent area of research, as well as an outline of immediate lines of work that promise to open new vistas in our understanding of cascading behaviour in social networks

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Models for the modern power grid

    Full text link
    This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.Comment: Submitted to EPJ-ST Power Grids, May 201

    Improved resource efficiency and cascading utilisation of renewable materials

    Get PDF
    In light of various environmental problems and challenges concerning resource allocation, the utilisation of renewable resources is increasingly important for the efficient use of raw materials. Therefore, cascading utilisation (i.e., the multiple material utilisations of renewable resources prior to their conversion into energy) and approaches that aim to further increase resource efficiency (e.g., the utilisation of by-products) can be considered guiding principles. This paper therefore introduces the Special Volume “Improved Resource Efficiency and Cascading Utilisation of Renewable Materials”. Because both research aspects, resource efficiency and cascading utilisation, belong to several disciplines, the Special Volume adopts an interdisciplinary perspective and presents 16 articles, which can be divided into four subjects: Innovative Materials based on Renewable Resources and their Impact on Sustainability and Resource Efficiency, Quantitative Models for the Integrated Optimisation of Production and Distribution in Networks for Renewable Resources, Information Technology-based Collaboration in Value Generating Networks for Renewable Resources, and Consumer Behaviour towards Eco-friendly Products. The interdisciplinary perspective allows a comprehensive overview of current research on resource efficiency, which is supplemented with 15 book reviews showing the extent to which textbooks of selected disciplines already refer to resource efficiency. This introductory article highlights the relevance of the four subjects, presents summaries of all papers, and discusses future research directions. The overall contribution of the Special Volume is that it bridges the resource efficiency research of selected disciplines and that it presents several approaches for more environmentally sound production and consumption

    Critical infrastructure, panarchies and the vulnerability paths of cascading disasters

    Get PDF
    Cascading effects and cascading disasters are emerging fields of scientific research. The widespread diffusion of functional networks increases the complexity of interdependent systems and their vulnerability to large-scale disruptions. Although in recent years studies of interconnections and chain effects have improved significantly, cascading phenomena are often associated with the ‘‘toppling domino metaphor’’, or with high-impact, low-probability events. This paper aimed to support a paradigm shift in the state of the art by proposing a new theoretical approach to cascading events in terms of their root causes and lack of predictability. By means of interdisciplinary theory building, we demonstrate how cascades reflect the ways in which panarchies collapse. We suggest that the vulnerability of critical infrastructure may orientate the progress of events in relation to society’s feedback loops, rather than merely being an effect of natural triggers. Our conclusions point to a paradigm shift in the preparedness phase that could include escalation points and social nodes, but that also reveals a brand new field of research for disaster scholars

    The fragility of decentralised trustless socio-technical systems

    Get PDF
    The blockchain technology promises to transform finance, money and even governments. However, analyses of blockchain applicability and robustness typically focus on isolated systems whose actors contribute mainly by running the consensus algorithm. Here, we highlight the importance of considering trustless platforms within the broader ecosystem that includes social and communication networks. As an example, we analyse the flash-crash observed on 21st June 2017 in the Ethereum platform and show that a major phenomenon of social coordination led to a catastrophic cascade of events across several interconnected systems. We propose the concept of “emergent centralisation” to describe situations where a single system becomes critically important for the functioning of the whole ecosystem, and argue that such situations are likely to become more and more frequent in interconnected socio-technical systems. We anticipate that the systemic approach we propose will have implications for future assessments of trustless systems and call for the attention of policy-makers on the fragility of our interconnected and rapidly changing world
    • 

    corecore