8,012 research outputs found

    Full predictive cascaded speed and current control of an induction machine

    Get PDF
    This paper presents and experimentally validates a new control scheme for electrical drive systems, named cascaded predictive speed and current control (PSCC). This new strategy uses the model predictive control concept. It has a cascaded structure like that found in field-oriented control or direct torque control. Therefore the control strategy has two loops, external and internal, both implemented with model predictive control. The external loop controls the speed, while the inner loop controls the stator currents. The inner control loop is based on Finite Control Set Model Predictive Control (FCS-MPC), and the external loop uses MPC deadbeat, making full use of the inner loop‘s highly dynamic response. Experimental results show that the proposed strategy has a performance that is comparable to the classical control strategies but that it is overshoot-free and provides a better time response

    Speed Finite Control Set Model Predictive Control of a PMSM fed by Matrix Converter

    Get PDF
    This paper presents a new speed Finite Control Set Model Predictive Control (FCS-MPC) algorithm which has been applied to a Permanent Magnet Synchronous Motor (PMSM) driven by a Matrix Converter (MC). This method replaces the classical cascaded control scheme with a single control law that controls the motor currents and speed. Additionally, unlike classical MC modulation methods, the method allows direct control of the MC input currents. The performance of the proposed work has been verified by simulation studies and experimental results

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Predictive Control of Autonomous Kites in Tow Test Experiments

    Get PDF
    In this paper we present a model-based control approach for autonomous flight of kites for wind power generation. Predictive models are considered to compensate for delay in the kite dynamics. We apply Model Predictive Control (MPC), with the objective of guiding the kite to follow a figure-of-eight trajectory, in the outer loop of a two level control cascade. The tracking capabilities of the inner-loop controller depend on the operating conditions and are assessed via a frequency domain robustness analysis. We take the limitations of the inner tracking controller into account by encoding them as optimisation constraints in the outer MPC. The method is validated on a kite system in tow test experiments.Comment: The paper has been accepted for publication in the IEEE Control Systems Letters and is subject to IEEE Control Systems Society copyright. Upon publication, the copy of record will be available at http://ieeexplore.ieee.or

    Control of Towing Kites for Seagoing Vessels

    Full text link
    In this paper we present the basic features of the flight control of the SkySails towing kite system. After introduction of coordinate definitions and basic system dynamics we introduce a novel model used for controller design and justify its main dynamics with results from system identification based on numerous sea trials. We then present the controller design which we successfully use for operational flights for several years. Finally we explain the generation of dynamical flight patterns.Comment: 12 pages, 18 figures; submitted to IEEE Trans. on Control Systems Technology; revision: Fig. 15 corrected, minor text change

    Robust nonlinear generalized predictive control of a permanent magnet synchronous motor with an anti-windup compensator

    Get PDF
    This paper presents a robust nonlinear generalized predictive control (RNGPC) strategy applied to a permanent magnet synchronous motor (PMSM) for speed trajectory tracking and disturbance rejection. The nonlinear predictive control law is derived by using a newly defined design cost function. The Taylor series expansion is used to carry out the prediction in a finite horizon. No information about the external perturbation and parameters uncertainties are needed to ensure the robustness of the proposed RNGPC. Moreover, to maintain the phase current within the limits using saturation blocks, a cascaded structure is adopted and an anti-windup compensator is proposed. The validity of the proposed control strategy is implemented on a dSPACE DS1104 board driving in real-time a 0.25 kW PMSM. Experimental results have demonstrated the stability, robustness and the effectiveness of the proposed control strategy regarding trajectory tracking and disturbance rejection

    Computationally Efficient Trajectory Optimization for Linear Control Systems with Input and State Constraints

    Full text link
    This paper presents a trajectory generation method that optimizes a quadratic cost functional with respect to linear system dynamics and to linear input and state constraints. The method is based on continuous-time flatness-based trajectory generation, and the outputs are parameterized using a polynomial basis. A method to parameterize the constraints is introduced using a result on polynomial nonpositivity. The resulting parameterized problem remains linear-quadratic and can be solved using quadratic programming. The problem can be further simplified to a linear programming problem by linearization around the unconstrained optimum. The method promises to be computationally efficient for constrained systems with a high optimization horizon. As application, a predictive torque controller for a permanent magnet synchronous motor which is based on real-time optimization is presented.Comment: Proceedings of the American Control Conference (ACC), pp. 1904-1909, San Francisco, USA, June 29 - July 1, 201

    Full- & Reduced-Order State-Space Modeling of Wind Turbine Systems with Permanent-Magnet Synchronous Generator

    Get PDF
    Wind energy is an integral part of nowadays energy supply and one of the fastest growing sources of electricity in the world today. Accurate models for wind energy conversion systems (WECSs) are of key interest for the analysis and control design of present and future energy systems. Existing control-oriented WECSs models are subject to unstructured simplifications, which have not been discussed in literature so far. Thus, this technical note presents are thorough derivation of a physical state-space model for permanent magnet synchronous generator WECSs. The physical model considers all dynamic effects that significantly influence the system's power output, including the switching of the power electronics. Alternatively, the model is formulated in the (a,b,c)(a,b,c)- and (d,q)(d,q)-reference frame. Secondly, a complete control and operation management system for the wind regimes II and III and the transition between the regimes is presented. The control takes practical effects such as input saturation and integral windup into account. Thirdly, by a structured model reduction procedure, two state-space models of WECS with reduced complexity are derived: a non-switching model and a non-switching reduced-order model. The validity of the models is illustrated and compared through a numerical simulation study.Comment: 23 pages, 11 figure
    corecore