128 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    The Heat is On: Thermal Facial Landmark Tracking

    Full text link
    Facial landmark tracking for thermal images requires tracking certain important regions of subjects' faces, using images from thermal images, which omit lighting and shading, but show the temperatures of their subjects. The fluctuations of heat in particular places reflect physiological changes like bloodflow and perspiration, which can be used to remotely gauge things like anxiety and excitement. Past work in this domain has been limited to only a very limited set of architectures and techniques. This work goes further by trying a comprehensive suit of various models with different components, such as residual connections, channel and feature-wise attention, as well as the practice of ensembling components of the network to work in parallel. The best model integrated convolutional and residual layers followed by a channel-wise self-attention layer, requiring less than 100K parameters

    PD2T: Person-specific Detection, Deformable Tracking

    Get PDF
    Face detection/alignment has reached a satisfactory state in static images captured under arbitrary conditions. Such methods typically perform (joint) fitting independently for each frame and are used in commercial applications; however in the majority of the real-world scenarios the dynamic scenes are of interest. Hence, we argue that generic fitting per frame is suboptimal (it discards the informative correlation of sequential frames) and propose to learn person-specific statistics from the video to improve the generic results. To that end, we introduce a meticulously studied pipeline, which we name PD\textsuperscript{2}T, that performs person-specific detection and landmark localisation. We carry out extensive experimentation with a diverse set of i) generic fitting results, ii) different objects (human faces, animal faces) that illustrate the powerful properties of our proposed pipeline and experimentally verify that PD\textsuperscript{2}T outperforms all the compared methods

    Shape-appearance-correlated active appearance model

    Full text link
    © 2016 Elsevier Ltd Among the challenges faced by current active shape or appearance models, facial-feature localization in the wild, with occlusion in a novel face image, i.e. in a generic environment, is regarded as one of the most difficult computer-vision tasks. In this paper, we propose an Active Appearance Model (AAM) to tackle the problem of generic environment. Firstly, a fast face-model initialization scheme is proposed, based on the idea that the local appearance of feature points can be accurately approximated with locality constraints. Nearest neighbors, which have similar poses and textures to a test face, are retrieved from a training set for constructing the initial face model. To further improve the fitting of the initial model to the test face, an orthogonal CCA (oCCA) is employed to increase the correlation between shape features and appearance features represented by Principal Component Analysis (PCA). With these two contributions, we propose a novel AAM, namely the shape-appearance-correlated AAM (SAC-AAM), and the optimization is solved by using the recently proposed fast simultaneous inverse compositional (Fast-SIC) algorithm. Experiment results demonstrate a 5–10% improvement on controlled and semi-controlled datasets, and with around 10% improvement on wild face datasets in terms of fitting accuracy compared to other state-of-the-art AAM models

    Nesting optimization with adversarial games, meta-learning, and deep equilibrium models

    Get PDF
    Nested optimization, whereby an optimization problem is constrained by the solutions of other optimization problems, has recently seen a surge in its application to Deep Learning. While the study of such problems started nearly a century ago in the context of market theory, many of the algorithms developed since do not scale to modern Deep Learning applications. In this thesis, I push the understanding and applicability of nested optimization to three machine learning domains: 1) adversarial games, 2) meta-learning and 3) deep equilibrium models. For each domain, I tackle a particular goal. In 1) I adversarially learn model compression, in the case where training data isn't available, in 2) I meta-learn hyperparameters for long optimization processes without introducing greediness, and in 3) I use deep equilibrium models to improve temporal coherence in video landmark detection. The first part of my thesis deals with casting model compression as an adversarial game. Performing knowledge transfer from a large teacher network to a smaller student is a popular task in deep learning. However, due to growing dataset sizes and stricter privacy regulations, it is increasingly common not to have access to the data that was used to train the teacher. I propose a novel method which trains a student to match the predictions of its teacher without using any data or metadata. This is achieved by nesting the training optimization of the student with that of an adversarial generator, which searches for images on which the student poorly matches the teacher. These images are used to train the student in an online fashion. The student closely approximates its teacher for simple datasets like SVHN, and on CIFAR10 I improve on the state-of-the-art for few-shot distillation (with 100100 images per class), despite using no data. Finally, I also propose a metric to quantify the degree of belief matching between teacher and student in the vicinity of decision boundaries, and observe a significantly higher match between the zero-shot student and the teacher, than between a student distilled with real data and the teacher. The second part of my thesis deals with meta-learning hyperparameters in the case when the nested optimization to be differentiated is itself solved by many gradient steps. Gradient-based hyperparameter optimization has earned a widespread popularity in the context of few-shot meta-learning, but remains broadly impractical for tasks with long horizons (many gradient steps), due to memory scaling and gradient degradation issues. A common workaround is to learn hyperparameters online, but this introduces greediness which comes with a significant performance drop. I propose forward-mode differentiation with sharing (FDS), a simple and efficient algorithm which tackles memory scaling issues with forward-mode differentiation, and gradient degradation issues by sharing hyperparameters that are contiguous in time. I provide theoretical guarantees about the noise reduction properties of my algorithm, and demonstrate its efficiency empirically by differentiating through 104\sim 10^4 gradient steps of unrolled optimization. I consider large hyperparameter search ranges on CIFAR-10 where I significantly outperform greedy gradient-based alternatives, while achieving ×20\times 20 speedups compared to the state-of-the-art black-box methods. The third part of my thesis deals with converting deep equilibrium models to a form of nested optimization in order to perform robust video landmark detection. Cascaded computation, whereby predictions are recurrently refined over several stages, has been a persistent theme throughout the development of landmark detection models. I show that the recently proposed deep equilibrium model (DEQ) can be naturally adapted to this form of computation, given appropriate regularization. My landmark model achieves state-of-the-art performance on the challenging WFLW facial landmark dataset, reaching 3.923.92 normalized mean error with fewer parameters and a training memory cost of O(1)\mathcal{O}(1) in the number of recurrent modules. Furthermore, I show that DEQs are particularly suited for landmark detection in videos. In this setting, it is typical to train on still images due to the lack of labeled videos. This can lead to a ``flickering'' effect at inference time on video, whereby a model can rapidly oscillate between different plausible solutions across consecutive frames. I show that the DEQ root solving problem can be turned into a constrained optimization problem in a way that emulates recurrence at inference time, despite not having access to temporal data at training time. I call this "Recurrence without Recurrence'', and demonstrate that it helps reduce landmark flicker by introducing a new metric, and contributing a new facial landmark video dataset targeting landmark uncertainty. On the hard subset of this new dataset, made up of 500500 videos, my model improves the accuracy and temporal coherence by 1010 and 13%13\% respectively, compared to the strongest previously published model using a hand-tuned conventional filter
    corecore