1,056 research outputs found

    Cascade of classifier ensembles for reliable medical image classification

    Get PDF
    Medical image analysis and recognition is one of the most important tools in modern medicine. Different types of imaging technologies such as X-ray, ultrasonography, biopsy, computed tomography and optical coherence tomography have been widely used in clinical diagnosis for various kinds of diseases. However, in clinical applications, it is usually time consuming to examine an image manually. Moreover, there is always a subjective element related to the pathological examination of an image. This produces the potential risk of a doctor to make a wrong decision. Therefore, an automated technique will provide valuable assistance for physicians. By utilizing techniques from machine learning and image analysis, this thesis aims to construct reliable diagnostic models for medical image data so as to reduce the problems faced by medical experts in image examination. Through supervised learning of the image data, the diagnostic model can be constructed automatically. The process of image examination by human experts is very difficult to simulate, as the knowledge of medical experts is often fuzzy and not easy to be quantified. Therefore, the problem of automatic diagnosis based on images is usually converted to the problem of image classification. For the image classification tasks, using a single classifier is often hard to capture all aspects of image data distributions. Therefore, in this thesis, a classifier ensemble based on random subspace method is proposed to classify microscopic images. The multi-layer perceptrons are used as the base classifiers in the ensemble. Three types of feature extraction methods are selected for microscopic image description. The proposed method was evaluated on two microscopic image sets and showed promising results compared with the state-of-art results. In order to address the classification reliability in biomedical image classification problems, a novel cascade classification system is designed. Two random subspace based classifier ensembles are serially connected in the proposed system. In the first stage of the cascade system, an ensemble of support vector machines are used as the base classifiers. The second stage consists of a neural network classifier ensemble. Using the reject option, the images whose classification results cannot achieve the predefined rejection threshold at the current stage will be passed to the next stage for further consideration. The proposed cascade system was evaluated on a breast cancer biopsy image set and two UCI machine learning datasets, the experimental results showed that the proposed method can achieve high classification reliability and accuracy with small rejection rate. Many computer aided diagnosis systems face the problem of imbalance data. The datasets used for diagnosis are often imbalanced as the number of normal cases is usually larger than the number of the disease cases. Classifiers that generalize over the data are not the most appropriate choice in such an imbalanced situation. To tackle this problem, a novel one-class classifier ensemble is proposed. The Kernel Principle Components are selected as the base classifiers in the ensemble; the base classifiers are trained by different types of image features respectively and then combined using a product combining rule. The proposed one-class classifier ensemble is also embedded into the cascade scheme to improve classification reliability and accuracy. The proposed method was evaluated on two medical image sets. Favorable results were obtained comparing with the state-of-art results

    Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep Ensembles are More Efficient than Single Models

    Get PDF
    Deep Ensembles are a simple, reliable, and effective method of improving both the predictive performance and uncertainty estimates of deep learning approaches. However, they are widely criticised as being computationally expensive, due to the need to deploy multiple independent models. Recent work has challenged this view, showing that for predictive accuracy, ensembles can be more computationally efficient (at inference) than scaling single models within an architecture family. This is achieved by cascading ensemble members via an early-exit approach. In this work, we investigate extending these efficiency gains to tasks related to uncertainty estimation. As many such tasks, e.g. selective classification, are binary classification, our key novel insight is to only pass samples within a window close to the binary decision boundary to later cascade stages. Experiments on ImageNet-scale data across a number of network architectures and uncertainty tasks show that the proposed window-based early-exit approach is able to achieve a superior uncertainty-computation trade-off compared to scaling single models. For example, a cascaded EfficientNet-B2 ensemble is able to achieve similar coverage at 5% risk as a single EfficientNet-B4 with <30% the number of MACs. We also find that cascades/ensembles give more reliable improvements on OOD data vs scaling models up. Code for this work is available at: https://github.com/Guoxoug/window-early-exit

    Cascaded face detection using neural network ensembles

    Get PDF
    We propose a fast face detector using an efficient architecture based on a hierarchical cascade of neural network ensembles with which we achieve enhanced detection accuracy and efficiency. First, we propose a way to form a neural network ensemble by using a number of neural network classifiers, each of which is specialized in a subregion in the face-pattern space. These classifiers complement each other and, together, perform the detection task. Experimental results show that the proposed neural-network ensembles significantly improve the detection accuracy as compared to traditional neural-network-based techniques. Second, in order to reduce the total computation cost for the face detection, we organize the neural network ensembles in a pruning cascade. In this way, simpler and more efficient ensembles used at earlier stages in the cascade are able to reject a majority of nonface patterns in the image backgrounds, thereby significantly improving the overall detection efficiency while maintaining the detection accuracy. An important advantage of the new architecture is that it has a homogeneous structure so that it is suitable for very efficient implementation using programmable devices. Our proposed approach achieves one of the best detection accuracies in literature with significantly reduced training and detection cost

    Differentiation of thyroid nodules on US using features learned and extracted from various convolutional neural networks

    Get PDF
    Thyroid nodules are a common clinical problem. Ultrasonography (US) is the main tool used to sensitively diagnose thyroid cancer. Although US is non-invasive and can accurately differentiate benign and malignant thyroid nodules, it is subjective and its results inevitably lack reproducibility. Therefore, to provide objective and reliable information for US assessment, we developed a CADx system that utilizes convolutional neural networks and the machine learning technique. The diagnostic performances of 6 radiologists and 3 representative results obtained from the proposed CADx system were compared and analyzed.ope

    Zero Time Waste: Recycling Predictions in Early Exit Neural Networks

    Full text link
    The problem of reducing processing time of large deep learning models is a fundamental challenge in many real-world applications. Early exit methods strive towards this goal by attaching additional Internal Classifiers (ICs) to intermediate layers of a neural network. ICs can quickly return predictions for easy examples and, as a result, reduce the average inference time of the whole model. However, if a particular IC does not decide to return an answer early, its predictions are discarded, with its computations effectively being wasted. To solve this issue, we introduce Zero Time Waste (ZTW), a novel approach in which each IC reuses predictions returned by its predecessors by (1) adding direct connections between ICs and (2) combining previous outputs in an ensemble-like manner. We conduct extensive experiments across various datasets and architectures to demonstrate that ZTW achieves a significantly better accuracy vs. inference time trade-off than other recently proposed early exit methods.Comment: Accepted at NeurIPS 202
    corecore