13,784 research outputs found

    Deep Networks for Image Super-Resolution with Sparse Prior

    Full text link
    Deep learning techniques have been successfully applied in many areas of computer vision, including low-level image restoration problems. For image super-resolution, several models based on deep neural networks have been recently proposed and attained superior performance that overshadows all previous handcrafted models. The question then arises whether large-capacity and data-driven models have become the dominant solution to the ill-posed super-resolution problem. In this paper, we argue that domain expertise represented by the conventional sparse coding model is still valuable, and it can be combined with the key ingredients of deep learning to achieve further improved results. We show that a sparse coding model particularly designed for super-resolution can be incarnated as a neural network, and trained in a cascaded structure from end to end. The interpretation of the network based on sparse coding leads to much more efficient and effective training, as well as a reduced model size. Our model is evaluated on a wide range of images, and shows clear advantage over existing state-of-the-art methods in terms of both restoration accuracy and human subjective quality

    Cascaded Boundary Regression for Temporal Action Detection

    Full text link
    Temporal action detection in long videos is an important problem. State-of-the-art methods address this problem by applying action classifiers on sliding windows. Although sliding windows may contain an identifiable portion of the actions, they may not necessarily cover the entire action instance, which would lead to inferior performance. We adapt a two-stage temporal action detection pipeline with Cascaded Boundary Regression (CBR) model. Class-agnostic proposals and specific actions are detected respectively in the first and the second stage. CBR uses temporal coordinate regression to refine the temporal boundaries of the sliding windows. The salient aspect of the refinement process is that, inside each stage, the temporal boundaries are adjusted in a cascaded way by feeding the refined windows back to the system for further boundary refinement. We test CBR on THUMOS-14 and TVSeries, and achieve state-of-the-art performance on both datasets. The performance gain is especially remarkable under high IoU thresholds, e.g. map@tIoU=0.5 on THUMOS-14 is improved from 19.0% to 31.0%

    A Deep Representation for Invariance And Music Classification

    Get PDF
    Representations in the auditory cortex might be based on mechanisms similar to the visual ventral stream; modules for building invariance to transformations and multiple layers for compositionality and selectivity. In this paper we propose the use of such computational modules for extracting invariant and discriminative audio representations. Building on a theory of invariance in hierarchical architectures, we propose a novel, mid-level representation for acoustical signals, using the empirical distributions of projections on a set of templates and their transformations. Under the assumption that, by construction, this dictionary of templates is composed from similar classes, and samples the orbit of variance-inducing signal transformations (such as shift and scale), the resulting signature is theoretically guaranteed to be unique, invariant to transformations and stable to deformations. Modules of projection and pooling can then constitute layers of deep networks, for learning composite representations. We present the main theoretical and computational aspects of a framework for unsupervised learning of invariant audio representations, empirically evaluated on music genre classification.Comment: 5 pages, CBMM Memo No. 002, (to appear) IEEE 2014 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014
    • …
    corecore