17 research outputs found

    Visualisation of Large-Scale Call-Centre Data

    Get PDF
    The contact centre industry employs 4% of the entire United King-dom and United States’ working population and generates gigabytes of operational data that require analysis, to provide insight and to improve efficiency. This thesis is the result of a collaboration with QPC Limited who provide data collection and analysis products for call centres. They provided a large data-set featuring almost 5 million calls to be analysed. This thesis utilises novel visualisation techniques to create tools for the exploration of the large, complex call centre data-set and to facilitate unique observations into the data.A survey of information visualisation books is presented, provid-ing a thorough background of the field. Following this, a feature-rich application that visualises large call centre data sets using scatterplots that support millions of points is presented. The application utilises both the CPU and GPU acceleration for processing and filtering and is exhibited with millions of call events.This is expanded upon with the use of glyphs to depict agent behaviour in a call centre. A technique is developed to cluster over-lapping glyphs into a single parent glyph dependant on zoom level and a customizable distance metric. This hierarchical glyph repre-sents the mean value of all child agent glyphs, removing overlap and reducing visual clutter. A novel technique for visualising individually tailored glyphs using a Graphics Processing Unit is also presented, and demonstrated rendering over 100,000 glyphs at interactive frame rates. An open-source code example is provided for reproducibility.Finally, a novel interaction and layout method is introduced for improving the scalability of chord diagrams to visualise call transfers. An exploration of sketch-based methods for showing multiple links and direction is made, and a sketch-based brushing technique for filtering is proposed. Feedback from domain experts in the call centre industry is reported for all applications developed

    SPREAD AND DYNAMICS OF COVID-19: A DATA VISUALIZATION STUDY

    Get PDF
    Second Place of OSUN Student Research ForumA pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), named as coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO), emerged in Wuhan, China and it is currently underway resulting in worldwide severe morbidity and mortality. Since the beginning of the pandemic, visualizations have assisted us to understand the unpredictable nature of this virus by providing detailed information based on data and variables on the ground. During the pandemic, visualizations can help us to analyze features such as the infection rate within different groups of people, thus we could interpret the reasons behind the high infection rate. The objective of our study is to overview some of the state-of-art visualization techniques to illustrate the dynamics of the COVID-19 spread for Ohio. Although there are some potential variables, such as age, that are known to be associated with COVID-19, it remains unclear if the affection and death rates for COVID-19 differ significantly for some other factors. Therefore, we are going to analyze COVID-19 data from Ohio and the USA to discover such factors statistically.No embargoAcademic Major: Data Analytic

    Visualization of dynamic multidimensional and hierarchical datasets

    Get PDF
    When it comes to tools and techniques designed to help understanding complex abstract data, visualization methods play a prominent role. They enable human operators to lever age their pattern finding, outlier detection, and questioning abilities to visually reason about a given dataset. Many methods exist that create suitable and useful visual represen tations of static abstract, non-spatial, data. However, for temporal abstract, non-spatial, datasets, in which the data changes and evolves through time, far fewer visualization tech niques exist. This thesis focuses on the particular cases of temporal hierarchical data representation via dynamic treemaps, and temporal high-dimensional data visualization via dynamic projec tions. We tackle the joint question of how to extend projections and treemaps to stably, accurately, and scalably handle temporal multivariate and hierarchical data. The literature for static visualization techniques is rich and the state-of-the-art methods have proven to be valuable tools in data analysis. Their temporal/dynamic counterparts, however, are not as well studied, and, until recently, there were few hierarchical and high-dimensional methods that explicitly took into consideration the temporal aspect of the data. In addi tion, there are few or no metrics to assess the quality of these temporal mappings, and even fewer comprehensive benchmarks to compare these methods. This thesis addresses the abovementioned shortcomings. For both dynamic treemaps and dynamic projections, we propose ways to accurately measure temporal stability; we eval uate existing methods considering the tradeoff between stability and visual quality; and we propose new methods that strike a better balance between stability and visual quality than existing state-of-the-art techniques. We demonstrate our methods with a wide range of real-world data, including an application of our new dynamic projection methods to support the analysis and classification of hyperkinetic movement disorder data.Quando se trata de ferramentas e técnicas projetadas para ajudar na compreensão dados abstratos complexos, métodos de visualização desempenham um papel proeminente. Eles permitem que os operadores humanos alavanquem suas habilidades de descoberta de padrões, detecção de valores discrepantes, e questionamento visual para a raciocinar sobre um determinado conjunto de dados. Existem muitos métodos que criam representações visuais adequadas e úteis de para dados estáticos, abstratos, e não-espaciais. No entanto, para dados temporais, abstratos, e não-espaciais, isto é, dados que mudam e evoluem no tempo, existem poucas técnicas apropriadas. Esta tese concentra-se nos casos específicos de representação temporal de dados hierárquicos por meio de treemaps dinâmicos, e visualização temporal de dados de alta dimen sionalidade via projeções dinâmicas. Nós abordar a questão conjunta de como estender projeções e treemaps de forma estável, precisa e escalável para lidar com conjuntos de dados hierárquico-temporais e multivariado-temporais. Em ambos os casos, a literatura para técnicas estáticas é rica e os métodos estado da arte provam ser ferramentas valiosas em análise de dados. Suas contrapartes temporais/dinâmicas, no entanto, não são tão bem estudadas e, até recentemente, existiam poucos métodos hierárquicos e de alta dimensão que explicitamente levavam em consideração o aspecto temporal dos dados. Além disso, existiam poucas métricas para avaliar a qualidade desses mapeamentos visuais temporais, e ainda menos benchmarks abrangentes para comparação esses métodos. Esta tese aborda as deficiências acima mencionadas para treemaps dinâmicos e projeções dinâmicas. Propomos maneiras de medir com precisão a estabilidade temporal; avalia mos os métodos existentes, considerando o compromisso entre estabilidade e qualidade visual; e propomos novos métodos que atingem um melhor equilíbrio entre estabilidade e a qualidade visual do que as técnicas estado da arte atuais. Demonstramos nossos mé todos com uma ampla gama de dados do mundo real, incluindo uma aplicação de nossos novos métodos de projeção dinâmica para apoiar a análise e classificação dos dados de transtorno de movimentos

    RAMPVIS: Answering the Challenges of Building Visualisation Capabilities for Large-scale Emergency Responses

    Get PDF
    The effort for combating the COVID-19 pandemic around the world has resulted in a huge amount of data, e.g., from testing, contact tracing, modelling, treatment, vaccine trials, and more. In addition to numerous challenges in epidemiology, healthcare, biosciences, and social sciences, there has been an urgent need to develop and provide visualisation and visual analytics (VIS) capacities to support emergency responses under difficult operational conditions. In this paper, we report the experience of a group of VIS volunteers who have been working in a large research and development consortium and providing VIS support to various observational, analytical, model-developmental, and disseminative tasks. In particular, we describe our approaches to the challenges that we have encountered in requirements analysis, data acquisition, visual design, software design, system development, team organisation, and resource planning. By reflecting on our experience, we propose a set of recommendations as the first step towards a methodology for developing and providing rapid VIS capacities to support emergency responses

    Text-based Spatial and Temporal Visualizations and their Applications in Visual Analytics

    Get PDF
    Textual labels are an essential part of most visualizations used in practice. However, these textual labels are mainly used to annotate other visualizations rather than being a central part of the visualization. Visualization researchers in areas like cartography and geovisualization have studied the combination of graphical features and textual labels to generate map based visualizations, but textual labels alone are not the primary focus in these representations. The idea of using symbols in visual representations and their interpretation as a quantity is gaining more traction. These types of representations are not only aesthetically appealing but also present new possibilities of encoding data. Such scenarios regularly arise while designing visual representations, where designers have to investigate feasibility of encoding information using symbols alone especially textual labels but the lack of readily available automated tools, and design guidelines makes it prohibitively expensive to experiment with such visualization designs. In order to address such challenges, this thesis presents the design and development of visual representations consisting entirely of text. These visual representations open up the possibility of encoding different types of spatial and temporal datasets. We report our results through two novel visualizations: typographic maps and text-based TextRiver visualization. Typographic maps merge text and spatial data into a visual representation where text alone forms the graphical features, mimicking the practices of human map makers. We also introduce methods to combine our automatic typographic maps technique with spatial datasets to generate thema-typographic maps where the properties of individual characters in the map are modified based on the underlying spatial data. Our TextRiver visualization is composed of collection of stream-like shapes consisting entirely of text where each stream represents thematic strength variations over time within a corpus. Such visualization enables additional ways to encode information contained in temporal datasets by modifying text attributes. We also conducted a usability evaluation to assess the potential value of our text-based TextRiver design
    corecore