4,079 research outputs found

    On the Truthfulness of Petal Graphs for Visualisation of Data

    Get PDF
    A petal graph is an aesthetically attractive and applauded tool for visualising parameter sets. For instance, petal graphs are often used by Norwegian policy makers and decision makers in higher education as the Ministry of Education and Research relies on petal graphs in their reports. This study argues that petal graphs are prone to misinterpretation. It is challenging to interpret a petal graph in general, it is hard to compare two or more petal graphs and this study demonstrates that the physical characteristics of petal graphs can be incorrect in terms of the parameters on display. This study concludes that the use of petal graphs should be abolished and that other visualisation techniques to be used instead. Several alternatives are suggested

    Polar Electrophoresis: Shape of Two-Dimensional Maps Is as Important as Size

    Get PDF
    The performance of two-dimensional electrophoresis in conventional gels in Cartesian coordinates (2-DE) vs. polar coordinates (2-PE) is here evaluated. Although 2-DE is performed in much longer Immobiline gels in the first dimension (17 cm) vs. barely 7-cm in 2-PE, an equivalent resolving power is found. Moreover, due to the possibility of running up to seven Immobiline strips in the radial gel format, the reproducibility of spot position is seen to be higher, this resulting in a 20% higher matching efficiency. As an extra bonus, strings of “isobaric” spots (i.e. polypeptides of identical mass with different pI values) are more resolved in the radial gel format, especially in the 10 to 30 kDa region, where the gel area fans out leaving extra space for spot resolution. In conclusion, this novel gel format in the second dimension of 2D gels is seen as an important improvement of this technique, still one of the most popular in proteome analysis

    ΔSCOPE: A New Method to Quantify 3D Biological Structures and Identify Differences in Zebrafish Forebrain Development

    Get PDF
    Research in the life sciences has traditionally relied on the analysis of clear morphological phenotypes, which are often revealed using increasingly powerful microscopy techniques analyzed as maximum intensity projections (MIPs). However, as biology turns towards the analysis of more subtle phenotypes, MIPs and qualitative approaches are failing to adequately describe these phenotypes. To address these limitations and quantitatively analyze the three-dimensional (3D) spatial relationships of biological structures, we developed the computational method and program called ∆SCOPE (Changes in Spatial Cylindrical Coordinate Orientation using PCA Examination). Our approach uses the fluorescent signal distribution within a 3D data set and reorients the fluorescent signal to a relative biological reference structure. This approach enables quantification and statistical analysis of spatial relationships and signal density in 3D multichannel signals that are positioned around a well-defined structure contained in a reference channel. We validated the application of ∆SCOPE by analyzing normal axon and glial cell guidance in the zebrafish forebrain and by quantify- ing the commissural phenotypes associated with abnormal Slit guidance cue expression in the forebrain. Despite commissural phenotypes which display disruptions to the reference structure, ∆SCOPE was able to detect subtle, previously uncharacterized changes in zebrafish forebrain midline crossing axons and glia. This method has been developed as a user-friendly, open source program. We propose that ∆SCOPE is an innovative approach to advancing the state of image quantification in the field of high resolution microscopy, and that the techniques presented here are of broad applications to the life science field

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Full text link
    Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Get PDF
    4D Flow MRI; Hemodynamics; RecommendationsRessonància magnètica de flux 4D; Hemodinàmica; RecomanacionsResonancia magnética de flujo 4D; Hemodinámica; RecomendacionesHemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.1R01HL149787-01A1 (S. Schnell, M. Markl), 1R21NS122511-01 (S. Schnell), 1R01CA233878-01 (J.Collins) J.Sotelo thanks to ANID–Millennium Science Initiative Program–ICN2021_004 and FONDECYT de iniciación en investigación #11200481. Dr. Oechtering receives funding from the German Research Foundation (OE 746/1-1)

    Mri Methods For Imaging The Feto-Placental Vasculature And Blood

    Get PDF
    Fetal magnetic resonance imaging (MRI) in recent times has become a well-established adjunct to ultrasound (US) in routine clinical prenatal care and diagnostics. The majority of fetal MRI is restricted to T2-weighted scans, where the diagnosis is based on the appearance of normal and abnormal tissue. Although there have been many advancements in MRI and a plethora of sequences, that probe different anatomical and different physiological process, the adaptation of these in fetal imaging has been rather slow. Many of these can extract quantitative parameters that can throw light on the underlying tissue’s normal/patho-physiology. But the use of such quantitative MRI methods has been extremely limited in fetal imaging due to its unique and dynamic physiological milieu that pose several technical challenges including low signal to noise and/or resolution, artifacts associated with abdominal imaging and most importantly fetal motion. These limitations are expected to be overcome by (a) optimizing and (b) developing novel MR imaging sequences, both of which constitute the primary aim of my work. This work develops a framework that allows for vascular imaging in the fetus and placenta. This includes both qualitative vascular imaging and blood flow quantification. Towards this, three broad directions were explored (a) Moving to higher field imaging, while optimizing parameters for low energy deposition and (b) application of non-gated phase contrast MRI and (c) optimization of conventional time-of-flight angiography for fetal applications

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    Cotutela con il Dipartimento di Biotecnologie e Scienze della Vita, Universiità degli Studi dell'Insubria.openThis Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient.openInformaticaPedoia, ValentinaPedoia, Valentin

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient
    corecore