343 research outputs found

    Cartesian Aerial Manipulator with Compliant Arm

    Get PDF
    Nº ArtÍculo: 1001This paper presents an aerial manipulation robot consisting of a hexa-rotor equipped with a 2-DOF (degree of freedom) Cartesian base (XY–axes) that supports a 1-DOF compliant joint arm that integrates a gripper and an elastic linear force sensor. The proposed kinematic configuration improves the positioning accuracy of the end effector with respect to robotic arms with revolute joints, where each coordinate of the Cartesian position depends on all the joint angles. The Cartesian base reduces the inertia of the manipulator and the energy consumption since it does not need to lift its own weight. Consequently, the required torque is lower and, thus, the weight of the actuators. The linear and angular deflection sensors of the arm allow the estimation, monitoring and control of the interaction wrenches exerted in two axes (XZ) at the end effector. The kinematic and dynamic models are derived and compared with respect to a revolute-joint arm, proposing a force-position control scheme for the aerial robot. A battery counterweight mechanism is also incorporated in the X–axis linear guide to partially compensate for the motion of the manipulator. Experimental results indoors and outdoors show the performance of the robot, including object grasping and retrieval, contact force control, and force monitoring in grabbing situations.Ministerio de Economía, Industria y Competitividad Proyecto ARTIC RTI2018-102224- B-I00Comisión Europea Proyecto AERIAL-CORE H2020-2019-871479Comisión Europea Proyecto HYFLIERS H2020- ICT-25-2017-77941

    Compliant aerial manipulation.

    Get PDF
    The aerial manipulation is a research field which proposes the integration of robotic manipulators in aerial platforms, typically multirotors – widely known as “drones” – or autonomous helicopters. The development of this technology is motivated by the convenience to reduce the time, cost and risk associated to the execution of certain operations or tasks in high altitude areas or difficult access workspaces. Some illustrative application examples are the detection and insulation of leaks in pipe structures in chemical plants, repairing the corrosion in the blades of wind turbines, the maintenance of power lines, or the installation and retrieval of sensor devices in polluted areas. Although nowadays it is possible to find a wide variety of commercial multirotor platforms with payloads from a few gramps up to several kilograms, and flight times around thirty minutes, the development of an aerial manipulator is still a technological challenge due to the strong requirements relative to the design of the manipulator in terms of very low weight, low inertia, dexterity, mechanical robustness and control. The main contribution of this thesis is the design, development and experimental validation of several prototypes of lightweight (<2 kg) and compliant manipulators to be integrated in multirotor platforms, including human-size dual arm systems, compliant joint arms equipped with human-like finger modules for grasping, and long reach aerial manipulators. Since it is expected that the aerial manipulator is capable to execute inspection and maintenance tasks in a similar way a human operator would do, this thesis proposes a bioinspired design approach, trying to replicate the human arm in terms of size, kinematics, mass distribution, and compliance. This last feature is actually one of the key concepts developed and exploited in this work. Introducing a flexible element such as springs or elastomers between the servos and the links extends the capabilities of the manipulator, allowing the estimation and control of the torque/force, the detection of impacts and overloads, or the localization of obstacles by contact. It also improves safety and efficiency of the manipulator, especially during the operation on flight or in grabbing situations, where the impacts and contact forces may damage the manipulator or destabilize the aerial platform. Unlike most industrial manipulators, where force-torque control is possible at control rates above 1 kHz, the servo actuators typically employed in the development of aerial manipulators present important technological limitations: no torque feedback nor control, only position (and in some models, speed) references, low update rates (<100 Hz), and communication delays. However, these devices are still the best solution due to their high torque to weight ratio, low cost, compact design, and easy assembly and integration. In order to cope with these limitations, the compliant joint arms presented here estimate and control the wrenches from the deflection of the spring-lever transmission mechanism introduced in the joints, measured at joint level with encoders or potentiometers, or in the Cartesian space employing vision sensors. Note that in the developed prototypes, the maximum joint deflection is around 25 degrees, which corresponds to a deviation in the position of the end effector around 20 cm for a human-size arm. The capabilities and functionalities of the manipulators have been evaluated in fixed base test-bench firstly, and then in outdoor flight tests, integrating the arms in different commercial hexarotor platforms. Frequency characterization, position/force/impedance control, bimanual grasping, arm teleoperation, payload mass estimation, or contact-based obstacle localization are some of the experiments presented in this thesis that validate the developed prototypes.La manipulación aérea es un campo de investigación que propone la integración de manipuladores robóticos in plataformas aéreas, típicamente multirotores – comúnmente conocidos como “drones” – o helicópteros autónomos. El desarrollo de esta tecnología está motivada por la conveniencia de reducir el tiempo, coste y riesgo asociado a la ejecución de ciertas operaciones o tareas en áreas de gran altura o espacios de trabajo de difícil acceso. Algunos ejemplos ilustrativos de aplicaciones son la detección y aislamiento de fugas en estructura de tuberías en plantas químicas, la reparación de la corrosión en las palas de aerogeneradores, el mantenimiento de líneas eléctricas, o la instalación y recuperación de sensores en zonas contaminadas. Aunque hoy en día es posible encontrar una amplia variedad de plataformas multirotor comerciales con cargas de pago desde unos pocos gramos hasta varios kilogramos, y tiempo de vuelo entorno a treinta minutos, el desarrollo de los manipuladores aéreos es todavía un desafío tecnológico debido a los exigentes requisitos relativos al diseño del manipulador en términos de muy bajo peso, baja inercia, destreza, robustez mecánica y control. La contribución principal de esta tesis es el diseño, desarrollo y validación experimental de varios prototipos de manipuladores de bajo peso (<2 kg) con capacidad de acomodación (“compliant”) para su integración en plataformas aéreas multirotor, incluyendo sistemas bi-brazo de tamaño humano, brazos robóticos de articulaciones flexibles con dedos antropomórficos para agarre, y manipuladores aéreos de largo alcance. Puesto que se prevé que el manipulador aéreo sea capaz de ejecutar tareas de inspección y mantenimiento de forma similar a como lo haría un operador humano, esta tesis propone un enfoque de diseño bio-inspirado, tratando de replicar el brazo humano en cuanto a tamaño, cinemática, distribución de masas y flexibilidad. Esta característica es de hecho uno de los conceptos clave desarrollados y utilizados en este trabajo. Al introducir un elemento elástico como los muelles o elastómeros entre el los actuadores y los enlaces se aumenta las capacidades del manipulador, permitiendo la estimación y control de las fuerzas y pares, la detección de impactos y sobrecargas, o la localización de obstáculos por contacto. Además mejora la seguridad y eficiencia del manipulador, especialmente durante las operaciones en vuelo, donde los impactos y fuerzas de contacto pueden dañar el manipulador o desestabilizar la plataforma aérea. A diferencia de la mayoría de manipuladores industriales, donde el control de fuerzas y pares es posible a tasas por encima de 1 kHz, los servo motores típicamente utilizados en el desarrollo de manipuladores aéreos presentan importantes limitaciones tecnológicas: no hay realimentación ni control de torque, sólo admiten referencias de posición (o bien de velocidad), y presentan retrasos de comunicación. Sin embargo, estos dispositivos son todavía la mejor solución debido al alto ratio de torque a peso, por su bajo peso, diseño compacto y facilidad de ensamblado e integración. Para suplir estas limitaciones, los brazos robóticos flexibles presentados aquí permiten estimar y controlar las fuerzas a partir de la deflexión del mecanismo de muelle-palanca introducido en las articulaciones, medida a nivel articular mediante potenciómetros o codificadores, o en espacio Cartesiano mediante sensores de visión. Tómese como referencia que en los prototipos desarrollados la máxima deflexión articular es de unos 25 grados, lo que corresponde a una desviación de posición en torno a 20 cm en el efector final para un brazo de tamaño humano. Las capacidades y funcionalidades de estos manipuladores se han evaluado en base fija primero, y luego en vuelos en exteriores, integrando los brazos en diferentes plataformas hexartor comerciales. Caracterización frecuencial, control de posición/fuerza/impedancia, agarre bimanual, teleoperación de brazos, estimación de carga, o la localización de obstáculos mediante contacto son algunos de los experimentos presentados en esta tesis para validar los prototipos desarrollados por el auto

    Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment

    Get PDF
    As robots become more prolific in the human environment, it is important that safe operational procedures are introduced at the same time; typical robot control methods are often very stiff to maintain good positional tracking, but this makes contact (purposeful or accidental) with the robot dangerous. In addition, if robots are to work cooperatively with humans, natural interaction between agents will make tasks easier to perform with less effort and learning time. Stability of the robot is particularly important in this situation, especially as outside forces are likely to affect the manipulator when in a close working environment; for example, a user leaning on the arm, or task-related disturbance at the end-effector. Recent research has discovered the mechanisms of how humans adapt the applied force and impedance during tasks. Studies have been performed to apply this adaptation to robots, with promising results showing an improvement in tracking and effort reduction over other adaptive methods. The basic algorithm is straightforward to implement, and allows the robot to be compliant most of the time and only stiff when required by the task. This allows the robot to work in an environment close to humans, but also suggests that it could create a natural work interaction with a human. In addition, no force sensor is needed, which means the algorithm can be implemented on almost any robot. This work develops a stable control method for bimanual robot tasks, which could also be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is created and verified, which is then used for controller simulations. The biomimetic control algorithm forms the basis of the controller, which is developed into a hybrid control system to improve both task-space and joint-space control when the manipulator is disturbed in the natural environment. Fuzzy systems are implemented to remove the need for repetitive and time consuming parameter tuning, and also allows the controller to actively improve performance during the task. Experimental simulations are performed, and demonstrate how the hybrid task/joint-space controller performs better than either of the component parts under the same conditions. The fuzzy tuning method is then applied to the hybrid controller, which is shown to slightly improve performance as well as automating the gain tuning process. In summary, a novel biomimetic hybrid controller is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a demonstration of task-suitability in a bimanual-type situation.EPSR

    Riistvarapaindlik ROSi tarkvarapakett tööstuslike robotite mööndlikuks juhtimiseks

    Get PDF
    Industrial robotics today is moving towards using lightweight collaborative robots to make it possible for small and medium sized enterprises to integrate robots in their manufacturing environment. However, there is still very few collaborative robots seen in the industry and the main reason is that programming of the robot is still too expensive and time-consuming, since there are too few ready solutions available today for controlling co-robots. The solution would be more available open source, maintainable, extendable and usable high-quality code for controlling co-robots. This thesis concentrates on developing such complete software bundle on ROS for compliant control for industrial collaborative manipulators

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    Robot Control and Programming: Class notes.

    Get PDF
    The term robot is quite complex because it can mean different things to different people. Mostly, it recalls us images of science fiction robots, such as the famous C3PO and R2D2 of Star Wars Trilogy. However, we have to focus on other types, and wait a little for the progress of the technology. If we focus on the real robots, we can find different types. However, the vast majority are classified into the industrial robot category. Industrial robots are recognised easily since their shape usually reminds the human arm. The term industrial shows the fact that those robots work in factories as components of larger manufacturing systems and processes. This book are focused on the lectures that Emilio Sánchez delivers in the frame of Robot Control and Programing subject in TECNUN, where the reader can find and introduction to the basic problems and control and programming techniques of industrial robots. Despite the fact the book is based on classnotes, the author prepared them very carefully to give to them the appearance of a real book. The book starts with a discussion about what is and what isn't a robot, classification and a very brief note about robotics history. The course will cover the different and basic programming and control strategies. Another issue discussed will be the morphology classification. The most important section is the kinematics model. This problem can be solved by means of Denavit-Hartenberg method and homogeneous transformations among coordinate systems. The last chapters are devoted to position control strategies and path planning. Finally the author encourages the reader to open and read this book since he really thinks that Robotics is a very large and interesting field, involving many different disciplines: mechanical design, sensors, actuation (pneumatic, hydraulic, electrical...), control, programming... For this reason, the term mechatronics is also used to express the link between the mechanics and electronics

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    A Learning-based Adaptive Compliance Method for Symmetric Bi-manual Manipulation

    Full text link
    Symmetric bi-manual manipulation is essential for various on-orbit operations due to its potent load capacity. As a result, there exists an emerging research interest in the problem of achieving high operation accuracy while enhancing adaptability and compliance. However, previous works relied on an inefficient algorithm framework that separates motion planning from compliant control. Additionally, the compliant controller lacks robustness due to manually adjusted parameters. This paper proposes a novel Learning-based Adaptive Compliance algorithm (LAC) that improves the efficiency and robustness of symmetric bi-manual manipulation. Specifically, first, the algorithm framework combines desired trajectory generation with impedance-parameter adjustment to improve efficiency and robustness. Second, we introduce a centralized Actor-Critic framework with LSTM networks, enhancing the synchronization of bi-manual manipulation. LSTM networks pre-process the force states obtained by the agents, further ameliorating the performance of compliance operations. When evaluated in the dual-arm cooperative handling and peg-in-hole assembly experiments, our method outperforms baseline algorithms in terms of optimality and robustness.Comment: 12 pages, 10 figure

    Towards Human-Robot Collaboration with Parallel Robots by Kinetostatic Analysis, Impedance Control and Contact Detection

    Get PDF
    Parallel robots provide the potential to be lever-aged for human-robot collaboration (HRC) due to low collision energies even at high speeds resulting from their reduced moving masses. However, the risk of unintended contact with the leg chains increases compared to the structure of serial robots. As a first step towards HRC, contact cases on the whole parallel robot structure are investigated and a disturbance observer based on generalized momenta and measurements of motor current is applied. In addition, a Kalman filter and a second-order sliding-mode observer based on generalized momenta are compared in terms of error and detection time. Gearless direct drives with low friction improve external force estimation and enable low impedance. The experimental validation is performed with two force-torque sensors and a kinetostatic model. This allows a new identification method of the motor torque constant of an assembled parallel robot to estimate external forces from the motor current and via a dynamics model. A Cartesian impedance control scheme for compliant robot-environmental dynamics with stiffness from 0.1-2N/mm and the force observation for low forces over the entire structure are validated. The observers are used for collisions and clamping at velocities of 0.4-0.9 m/s for detection within 9–58 ms and a reaction in the form of a zero-g mode.© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
    corecore