185,891 research outputs found

    On products in the coarse shape categories

    Get PDF
    The paper is devoted to the study of coarse shape of Cartesian products of topological spaces. If the Cartesian product of two spaces XX and YY admits an HPol-expansion, which is the Cartesian product of HPol-expansions of these spaces, then X×YX\times Y is a product in the coarse shape category. As a consequence, the Cartesian product of two compact Hausdorff spaces is a product in the coarse shape category. Finally, we show that the shape groups and the coarse shape groups commute with products under some conditions.Comment: 11 page

    Extensions of a result of Elekes and R\'onyai

    Full text link
    Many problems in combinatorial geometry can be formulated in terms of curves or surfaces containing many points of a cartesian product. In 2000, Elekes and R\'onyai proved that if the graph of a polynomial contains cn2cn^2 points of an n×n×nn\times n\times n cartesian product in R3\mathbb{R}^3, then the polynomial has the form f(x,y)=g(k(x)+l(y))f(x,y)=g(k(x)+l(y)) or f(x,y)=g(k(x)l(y))f(x,y)=g(k(x)l(y)). They used this to prove a conjecture of Purdy which states that given two lines in R2\mathbb{R}^2 and nn points on each line, if the number of distinct distances between pairs of points, one on each line, is at most cncn, then the lines are parallel or orthogonal. We extend the Elekes-R\'onyai Theorem to a less symmetric cartesian product. We also extend the Elekes-R\'onyai Theorem to one dimension higher on an n×n×n×nn\times n\times n\times n cartesian product and an asymmetric cartesian product. We give a proof of a variation of Purdy's conjecture with fewer points on one of the lines. We finish with a lower bound for our main result in one dimension higher with asymmetric cartesian product, showing that it is near-optimal.Comment: 23 page

    Strong Products of Hypergraphs: Unique Prime Factorization Theorems and Algorithms

    Full text link
    It is well-known that all finite connected graphs have a unique prime factor decomposition (PFD) with respect to the strong graph product which can be computed in polynomial time. Essential for the PFD computation is the construction of the so-called Cartesian skeleton of the graphs under investigation. In this contribution, we show that every connected thin hypergraph H has a unique prime factorization with respect to the normal and strong (hypergraph) product. Both products coincide with the usual strong graph product whenever H is a graph. We introduce the notion of the Cartesian skeleton of hypergraphs as a natural generalization of the Cartesian skeleton of graphs and prove that it is uniquely defined for thin hypergraphs. Moreover, we show that the Cartesian skeleton of hypergraphs can be determined in O(|E|^2) time and that the PFD can be computed in O(|V|^2|E|) time, for hypergraphs H = (V,E) with bounded degree and bounded rank
    corecore