1,692 research outputs found

    Carrier-phase and frequency-estimation bounds for transmissions with embedded reference symbols

    Get PDF
    Copyright © 2006 IEEEThe true Crame/spl acute/r-Rao lower bound (CRLB) for the joint estimation of carrier phase and frequency is derived for transmission bursts with interleaved reference and phase-shift keying/quadrature amplitude modulated data symbols. Results are presented for the special cases of midamble, and preamble and postamble, pilot-symbol insertion. The derivation reveals that the CRLB is a function of the location of the reference symbols in the burst, the number of reference symbols, the number of data symbols, the signal-to-noise ratio and the data-modulation scheme. By distributing the reference symbols symmetrically about the center of the burst and analyzing relative to the middle of the signal vector, the joint frequency and phase estimation can be decoupled, and the optimal phase estimation is achieved. In the decoupled case, the phase CRLB is independent of the location of reference symbols in the burst. In a symmetrical burst, the use of a preamble and postamble is found to provide a lower frequency-estimation CRLB than that with a midamble. It appears that the frequency CRLB is reduced as the reference symbols are symmetrically distributed closer to the ends of the burst.Feng Ric

    Synchronization Techniques for Burst-Mode Continuous Phase Modulation

    Get PDF
    Synchronization is a critical operation in digital communication systems, which establishes and maintains an operational link between transmitter and the receiver. As the advancement of digital modulation and coding schemes continues, the synchronization task becomes more and more challenging since the new standards require high-throughput functionality at low signal-to-noise ratios (SNRs). In this work, we address feedforward synchronization of continuous phase modulations (CPMs) using data-aided (DA) methods, which are best suited for burst-mode communications. In our transmission model, a known training sequence is appended to the beginning of each burst, which is then affected by additive white Gaussian noise (AWGN), and unknown frequency, phase, and timing offsets. Based on our transmission model, we derive the Cramer-Rao bound (CRB) for DA joint estimation of synchronization parameters. Using the CRB expressions, the optimum training sequence for CPM signals is proposed. It is shown that the proposed sequence minimizes the CRB for all three synchronization parameters asymptotically, and can be applied to the entire CPM family. We take advantage of the simple structure of the optimized training sequence in order to design a practical synchronization algorithm based on the maximum likelihood (ML) principles. The proposed DA algorithm jointly estimates frequency offset, carrier phase and symbol timing in a feedforward manner. The frequency offset estimate is first found by means of maximizing a one dimensional function. It is then followed by symbol timing and carrier phase estimation, which are carried out using simple closed-form expressions. We show that the proposed algorithm attains the theoretical CRBs for all synchronization parameters for moderate training sequence lengths and all SNR regions. Moreover, a frame synchronization algorithm is developed, which detects the training sequence boundaries in burst-mode CPM signals. The proposed training sequence and synchronization algorithm are extended to shaped-offset quadrature phase-shift keying (SOQPSK) modulation, which is considered for next generation aeronautical telemetry systems. Here, it is shown that the optimized training sequence outperforms the one that is defined in the draft telemetry standard as long as estimation error variances are considered. The overall bit error rate (BER) plots suggest that the optimized preamble with a shorter length can be utilized such that the performance loss is less than 0.5 dB of an ideal synchronization scenario

    Blind Carrier Phase Recovery for General 2{\pi}/M-rotationally Symmetric Constellations

    Full text link
    This paper introduces a novel blind carrier phase recovery estimator for general 2{\Pi}/M-rotationally symmetric constellations. This estimation method is a generalization of the non-data-aided (NDA) nonlinear Phase Metric Method (PMM) estimator already designed for general quadrature amplitude constellations. This unbiased estimator is seen here as a fourth order PMM then generalized to Mth order (Mth PMM) in such manner that it covers general 2{\Pi}/M-rotationally symmetric constellations such as PAM, QAM, PSK. Simulation results demonstrate the good performance of this Mth PMM estimation algorithm against competitive blind phase estimators already published for various modulation systems of practical interest.Comment: 14 pages, 12 figures, International Journal of Wireless & Mobile Networks (IJWMN

    Simultaneous Positioning and Communications: Hybrid Radio Architecture, Estimation Techniques, and Experimental Validation

    Get PDF
    abstract: Limited spectral access motivates technologies that adapt to diminishing resources and increasingly cluttered environments. A joint positioning-communications system is designed and implemented on \acf{COTS} hardware. This system enables simultaneous positioning of, and communications between, nodes in a distributed network of base-stations and unmanned aerial systems (UASs). This technology offers extreme ranging precision (<< 5 cm) with minimal bandwidth (10 MHz), a secure communications link to protect against cyberattacks, a small form factor that enables integration into numerous platforms, and minimal resource consumption which supports high-density networks. The positioning and communications tasks are performed simultaneously with a single, co-use waveform, which efficiently utilizes limited resources and supports higher user densities. The positioning task uses a cooperative, point-to-point synchronization protocol to estimate the relative position and orientation of all users within the network. The communications task distributes positioning information between users and secures the positioning task against cyberattacks. This high-performance system is enabled by advanced time-of-arrival estimation techniques and a modern phase-accurate distributed coherence synchronization algorithm. This technology may be installed in ground-stations, ground vehicles, unmanned aerial systems, and airborne vehicles, enabling a highly-mobile, re-configurable network with numerous applications.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Millimeter-wave Communication and Radar Sensing — Opportunities, Challenges, and Solutions

    Get PDF
    With the development of communication and radar sensing technology, people are able to seek for a more convenient life and better experiences. The fifth generation (5G) mobile network provides high speed communication and internet services with a data rate up to several gigabit per second (Gbps). In addition, 5G offers great opportunities of emerging applications, for example, manufacture automation with the help of precise wireless sensing. For future communication and sensing systems, increasing capacity and accuracy is desired, which can be realized at millimeter-wave spectrum from 30 GHz to 300 GHz with several tens of GHz available bandwidth. Wavelength reduces at higher frequency, this implies more compact transceivers and antennas, and high sensing accuracy and imaging resolution. Challenges arise with these application opportunities when it comes to realizing prototype or demonstrators in practice. This thesis proposes some of the solutions addressing such challenges in a laboratory environment.High data rate millimeter-wave transmission experiments have been demonstrated with the help of advanced instrumentations. These demonstrations show the potential of transceiver chipsets. On the other hand, the real-time communication demonstrations are limited to either low modulation order signals or low symbol rate transmissions. The reason for that is the lack of commercially available high-speed analog-to-digital converters (ADCs); therefore, conventional digital synchronization methods are difficult to implement in real-time systems at very high data rates. In this thesis, two synchronous baseband receivers are proposed with carrier recovery subsystems which only require low-speed ADCs [A][B].Besides synchronization, high-frequency signal generation is also a challenge in millimeter-wave communications. The frequency divider is a critical component of a millimeter-wave frequency synthesizer. Having both wide locking range and high working frequencies is a challenge. In this thesis, a tunable delay gated ring oscillator topology is proposed for dual-mode operation and bandwidth extension [C]. Millimeter-wave radar offers advantages for high accuracy sensing. Traditional millimeter-wave radar with frequency-modulated continuous-wave (FMCW), or continuous-wave (CW), all have their disadvantages. Typically, the FMCW radar cannot share the spectrum with other FMCW radars.\ua0 With limited bandwidth, the number of FMCW radars that could coexist in the same area is limited. CW radars have a limited ambiguous distance of a wavelength. In this thesis, a phase-modulated radar with micrometer accuracy is presented [D]. It is applicable in a multi-radar scenario without occupying more bandwidth, and its ambiguous distance is also much larger than the CW radar. Orthogonal frequency-division multiplexing (OFDM) radar has similar properties. However, its traditional fast calculation method, fast Fourier transform (FFT), limits its measurement accuracy. In this thesis, an accuracy enhancement technique is introduced to increase the measurement accuracy up to the micrometer level [E]

    Near Real-Time Zigbee Device Discrimination Using CB-DNA Features

    Get PDF
    Currently, Low-Rate Wireless Personal Area Networks (LR-WPAN) based on the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard are at risk due to open-source tools which allow bad actors to exploit unauthorized network access through various cyberattacks by falsifying bit-level credentials. This research investigates implementing a Radio Frequency (RF) air monitor to perform Near RealTime (NRT) discrimination of Zigbee devices using the IEEE 802.15.4 standard. The air monitor employed a Multiple Discriminant Analysis/Euclidean Distance classifier to discriminate Zigbee devices based upon Constellation-Based Distinct Native Attribute (CB-DNA) fingerprints. Through the use of CB-DNA fingerprints, Physical Layer (PHY) characteristics unique to each Zigbee device strengthen the native bit-level authentication process for LR-WPAN networks. Overall, the developed RF air monitor achieved an Average Cross-Class Percent Correct Classification of %Ctst = 99:24% during the testing of Ncls = 5 like-model BladeRF Software Defined Radios transmitting Zigbee protocol bursts. Additionally, to evaluate the NRT capability of the air monitor, a statistical analysis of Ntiming = 1000 Zigbee bursts determined the worst-case average runtime from burst detection to classification. The analysis concluded that the runtime was truntime fi 269 mSec. Ultimately, this research found that PHY characteristics provide an additional method of authentication NRT to enhance the inherent network security for Zigbee applications from cyberattacks
    • …
    corecore