13 research outputs found

    Cardinality Enhancement of SAC-OCDMA Systems Using New Diagonal Double Weight Code

    Get PDF
    Optical code division multiple access (OCDMA) provides  another dimension to multiple access systems,  in which each user is assigned a unique code. This allows  each subscriber  to simultaneously access the medium without any contention. However, simultaneous access of multiple users introduce multiple access interference  (MAI)  which primarily deteriorates  the performance of OCDMA systems.  This paper proposes a new code called diagonal double weight (DDW) code to elevate the performance and cardinality of spectral amplitude coding  (SAC) OCDMA  systems. Performance of our proposed code is evaluated using comprehensive analytical  analysis  followed by simulation analysis. Examination  of bit error rate shows that DDW code along with  single photodiode detection  technique  provides efficient performance, with added benefits of simplified design, large cardinality and ease of implementation

    A Comparative Study of Asynchronous and Synchronous OCDMA Systems

    Get PDF

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively

    Design and Analysis of Self-Healing Tree-Based Hybrid Spectral Amplitude Coding OCDMA System

    Get PDF
    This paper presents an efficient tree-based hybrid spectral amplitude coding optical code division multiple access (SAC-OCDMA) system that is able to provide high capacity transmission along with fault detection and restoration throughout the passive optical network (PON). Enhanced multidiagonal (EMD) code is adapted to elevate system’s performance, which negates multiple access interference and associated phase induced intensity noise through efficient two-matrix structure. Moreover, system connection availability is enhanced through an efficient protection architecture with tree and star-ring topology at the feeder and distribution level, respectively. The proposed hybrid architecture aims to provide seamless transmission of information at minimum cost. Mathematical model based on Gaussian approximation is developed to analyze performance of the proposed setup, followed by simulation analysis for validation. It is observed that the proposed system supports 64 subscribers, operating at the data rates of 2.5 Gbps and above. Moreover, survivability and cost analysis in comparison with existing schemes show that the proposed tree-based hybrid SAC-OCDMA system provides the required redundancy at minimum cost of infrastructure and operation

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively

    6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis

    Get PDF
    This paper presents a novel 160 Gbps free space optics (FSO) communication system for 6G applications. Polarization division multiplexing (PDM) is integrated with an optical code division multiple access (OCDMA) technique to form a PDM-OCDMA hybrid. There are two polarization states: one is X-polarization generated from adjusting the azimuthal angle of a light source at 0° while the other is Y-polarization which is generated by adjusting the azimuthal angle of a light source at 90°. Each polarization state is used for the transmission of four independent users. Each channel is assigned by permutation vector (PV) codes and carries 20 Gbps data. Four different weather conditions are considered for evaluating the performance of our proposed model. These weather conditions are clear air (CA), foggy conditions (low fog (LF), medium fog (MF), and heavy fog (HF)), dust storms (low dust storm (LD), moderate dust storm (MD), heavy dust storm (HD)), and snowfall (wet snow (WS) and dry snow (DS)). Bit error rate (BER), Q-factors, maximum propagation range, channel capacity, and eye diagrams are used for evaluating the performance of the proposed model. Simulation results assure successful transmission of 160 Gbps overall capacity for eight channels. The longest FSO range is 7 km which occurred under CA while the minimum is achieved under HD, which is 0.112 km due to large attenuation caused by HD. Within fog conditions, the maximum propagation distances are 1.525 km in LF, 1.05 km in MF, and 0.85 km in HF. Likewise, under WS and DS, the proposed system can support transmission distances of 1.15 km and 0.28 km, respectively. All these transmission distances are achieved at BER less than 10−5

    A new efficient way based on special stabilizer multiplier permutations to attack the hardness of the minimum weight search problem for large BCH codes

    Get PDF
    BCH codes represent an important class of cyclic error-correcting codes; their minimum distances are known only for some cases and remains an open NP-Hard problem in coding theory especially for large lengths. This paper presents an efficient scheme ZSSMP (Zimmermann Special Stabilizer Multiplier Permutation) to find the true value of the minimum distance for many large BCH codes. The proposed method consists in searching a codeword having the minimum weight by Zimmermann algorithm in the sub codes fixed by special stabilizer multiplier permutations. These few sub codes had very small dimensions compared to the dimension of the considered code itself and therefore the search of a codeword of global minimum weight is simplified in terms of run time complexity.  ZSSMP is validated on all BCH codes of length 255 for which it gives the exact value of the minimum distance. For BCH codes of length 511, the proposed technique passes considerably the famous known powerful scheme of Canteaut and Chabaud used to attack the public-key cryptosystems based on codes. ZSSMP is very rapid and allows catching the smallest weight codewords in few seconds. By exploiting the efficiency and the quickness of ZSSMP, the true minimum distances and consequently the error correcting capability of all the set of 165 BCH codes of length up to 1023 are determined except the two cases of the BCH(511,148) and BCH(511,259) codes. The comparison of ZSSMP with other powerful methods proves its quality for attacking the hardness of minimum weight search problem at least for the codes studied in this paper

    Full-length non-linear binary sequences with Zero Correlation Zone for multiuser communications

    Get PDF
    The research on new sets of sequences to be used asspreading codes in multiple user communications is still an activearea, despite the great amount of literature available since manyyears on this topic. In fact, new paradigms like dense anddecentralized wireless networks, where there is no centralcontroller to assign the resources to the nodes, are revamping theinterest on large sets of sequences providing adequate correlationproperties to support a big number of nodes, in potentially hostilechannels. This paper focuses on the Zero Correlation Zone (ZCZ)property exhibited by a family of non-linear binary sequencesfeaturing a great cardinality of their set and good securityrelatedfeatures, and provides evidence of their suitability tomultiuser communications, in channels affected by multipath

    Full-length non-linear binary sequences with Zero Correlation Zone for multiuser communications

    Get PDF
    none3noThe research on new sets of sequences that can be applied as spreading codes in multiple user communications is still an active area, even if this topic has been extensively investigated since long time. In fact, new communication paradigms like dense and decentralized wireless networks, where there is no central controller to assign the resources to the nodes, are revamping the interest on finding large sets of sequences providing adequate correlation properties to support a big number of nodes, in potentially hostile channels. This paper focuses on the Zero Correlation Zone (ZCZ) property exhibited by a family of nonlinear binary sequences featuring a great cardinality of their set, and good security-related features, and provides evidence of their suitability to multiuser communications, in channels affected by multipath.Sarayloo, M.; Gambi, E.; Spinsante, S.Sarayloo, Mahdiyar; Gambi, Ennio; Spinsante, Susann
    corecore