76 research outputs found

    Gemischte Volumina, gemischte Ehrhart-Theorie und deren Anwendungen in tropischer Geometry und Gestaengekonfigurationsproblemen

    Get PDF
    The aim of this thesis is the discussion of mixed volumes, their interplay with algebraic geometry, discrete geometry and tropical geometry and their use in applications such as linkage configuration problems. Namely we present new technical tools for mixed volume computation, a novel approach to Ehrhart theory that links mixed volumes with counting integer points in Minkowski sums, new expressions in terms of mixed volumes of combinatorial quantities in tropical geometry and furthermore we employ mixed volume techniques to obtain bounds in certain graph embedding problems.Ziel dieser Arbeit ist die Diskussion gemischter Volumina, ihres Zusammenspiels mit der algebraischen Geometrie, der diskreten Geometrie und der tropischen Geometrie sowie deren Anwendungen im Bereich von Gestaenge-Konfigurationsproblemen. Wir praesentieren insbesondere neue Methoden zur Berechnung gemischter Volumina, einen neuen Zugang zur Ehrhart Theorie, welcher gemischte Volumina mit der Enumeration ganzzahliger Punkte in Minkowski-Summen verbindet, neue Formeln, die kombinatorische Groessen der tropischen Geometrie mithilfe gemischter Volumina beschreiben, und einen neuen Ansatz zur Verwendung gemischter Volumina zur Loesung eines Einbettungsproblems der Graphentheorie

    Rigour, Proof and Soundness

    Get PDF

    The Resemblance Structure of Natural Kinds: A Formal Model for Resemblance Nominalism

    Get PDF
    278 p.The aim of this thesis is to better understand the ways natural kinds are related to each other by species-genus relations and the ways in which the members of the kind are related to each other by resemblance relations, by making use of formal models of kinds. This is done by first analysing a Minimal Conception of Natural Kinds and then reconstructing it from the ontological assumptions of Resemblance Nominalism. The questions addressed are:(1) What is the external structure of kinds' In what ways are kinds related to each other by species-genus relations'(2) What is the internal structure of kinds' In what sense are the instances of a kind similar enough to each other'According to the Minimal Conception of Kinds, kinds have two components, a set of members of the kind (the extension) and a set of natural attributes common to these objects (the intension). Several interesting features of this conception are discussed by making use of the mathematical theory of concept lattices. First, such structures provide a model for contemporary formulations of syllogistic logic. Second, kinds are ordered forming a complete lattice that follows Kant's law of the duality between extension and intension, according to which the extension of a kind is inversely related to its intension. Finally, kinds are shown to have Aristotelian definitions in terms of genera and specific differences. Overall this results in a description of the specificity relations of kinds as an algebraic calculus.According to Resemblance Nominalism, attributes or properties are classes of similar objects. Such an approach faces Goodman's companionship and imperfect community problems. In order to deal with these, a specific nominalism, namely Aristocratic Resemblance Nominalism, is chosen. According to it, attributes are classes of objects resembling a given paradigm. A model for it is introduced by making use of the mathematical theory of similarity structures and of some results on the topic of quasianalysis. Two other models (the polar model and an order-theoretic model) are considered and shown to be equivalent to the previous one.The main result is that the class of lattices of kinds that a nominalist can recover uniquely by starting from these assumptions is that of complete coatomistic lattices. Several other related results are obtained, including a generalization of the similarity model that allows for paradigms with several properties and properties with several paradigms. The conclusion is that, under nominalist assumptions, the internal structure of kinds is fixed by paradigmatic objects and the external structure of kinds is that of a coatomistic lattice that satisfies the Minimal Conception of Kinds

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    Functionality and performance: two important considerations when implementing topology in 3D.

    Get PDF
    This thesis contributes to the understanding of the use of topology in analysing 3D spatial data, focussing in particular on two aspects of the problem - what binary topological analysis functionality is required in a commercial 3D Geographical Information System (GIS), and how should this functionality be implemented to achieve the most efficient query performance. Topology is defined as the identification of spatial relationships between adjacent or neighbouring objects. The first stage of this research, a review of applications of topology, results in a generic list of requirements for topology in 3D. This was carried out in parallel with a review of topological frameworks and the relationships identified by one of the frameworks, Egenhofer and Herring's 9-Intersection, selected for implementation. Three generic binary relationship queries are identified (Find Objects with a Specific Relationship, Find Intersecting Objects and What Relationship is there Between These Objects) and a mechanism described to allow these to be adapted to specific application terminology. Approaches to the implementation of 3D binary topological queries include the use of data structures and an As-Required calculation, where computational geometry algorithms are run to determine relationships each time the user runs a query. The Three-Dimensional Formal Data Structure (3DFDS) was selected as a representative example of a Boundary-Representation (B- Rep) structure in GIS. Given the number of joins to be traversed when identifying binary relationships from a B-Rep structure, along with the requirement to query additional containment exception tables, an alternate structure, the Simplified Topological Structure (STS), was proposed to improve binary query performance. Binary relationship queries were developed and comparative performance tests carried out against 3DFDS, STS and a Proxy for the As-Required calculation, using a 1.08 million object test dataset. Results show that STS provides a significant performance improvement over 3DFDS. No definitive conclusion could be drawn when comparing STS with the Proxy for the As-Required approach

    Algebraic Methods for Dynamical Systems and Optimisation

    Get PDF
    This thesis develops various aspects of Algebraic Geometry and its applications in different fields of science. In Chapter 2 we characterise the feasible set of an optimisation problem relevant in chemical process engineering. We consider the polynomial dynamical system associated with mass-action kinetics of a chemical reaction network. Given an initial point, the attainable region of that point is the smallest convex and forward closed set that contains the trajectory. We show that this region is a spectrahedral shadow for a class of linear dynamical systems. As a step towards representing attainable regions we develop algorithms to compute the convex hulls of trajectories. We present an implementation of this algorithm which works in dimensions 2,3 and 4. These algorithms are based on a theory that approximates the boundary of the convex hull of curves by a family of polytopes. If the convex hull is represented as the output of our algorithms we can also check whether it is forward closed or not. Chapter 3 has two parts. In this first part, we do a case study of planar curves of degree 6. It is known that there are 64 rigid isotopy types of these curves. We construct explicit polynomial representatives with integer coefficients for each of these types using different techniques in the literature. We present an algorithm, and its implementation in software Mathematica, for determining the isotopy type of a given sextic. Using the representatives various sextics for each type were sampled. On those samples we explored the number of real bitangents, inflection points and eigenvectors. We also computed the tensor rank of the representatives by numerical methods. We show that the locus of all real lines that do not meet a given sextic is a union of up to 46 convex regions that is bounded by its dual curve. In the second part of Chapter 3 we consider a problem arising in molecular biology. In a system where molecules bind to a target molecule with multiple binding sites, cooperativity measures how the already bound molecules affect the chances of other molecules binding. We address an optimisation problem that arises while quantifying cooperativity. We compute cooperativity for the real data of molecules binding to hemoglobin and its variants. In Chapter 4, given a variety X in n-dimensional projective space we look at its image under the map that takes each point in X to its coordinate-wise r-th power. We compute the degree of the image. We also study their defining equations, particularly for hypersurfaces and linear spaces. We exhibit the set-theoretic equations of the coordinate-wise square of a linear space L of dimension k embedded in a high dimensional ambient space. We also establish a link between coordinate-wise squares of linear spaces and the study of real symmetric matrices with degenerate eigenspectrum
    • …
    corecore