99,233 research outputs found

    Areas of Same Cardinal Direction

    Get PDF
    Cardinal directions, such as North, East, South, and West, are the foundation for qualitative spatial reasoning, a common field of GIS, Artificial Intelligence, and cognitive science. Such cardinal directions capture the relative spatial direction relation between a reference object and a target object, therefore, they are important search criteria in spatial databases. The projection-based model for such direction relations has been well investigated for point-like objects, yielding a relation algebra with strong inference power. The Direction Relation Matrix defines the simple region-to-region direction relations by approximating the reference object to a minimum bounding rectangle. Models that capture the direction between extended objects fall short when the two objects are close to each other. For instance, the forty-eight contiguous states of the US are colloquially considered to be South of Canada, yet they include regions that are to the North of some parts of Canada. This research considers the cardinal direction as a field that is distributed through space and may take on varying values depending on the location within a reference object. Therefore, the fundamental unit of space, the point, is used as a reference to form a point-based cardinal direction model. The model applies to capture the direction relation between point-to-region and region-to-region configurations. As such, the reference object is portioned into areas of same cardinal direction with respect to the target object. This thesis demonstrates there is a set of 106 cardinal point-to-region relations, which can be normalized by considering mirroring and 90° rotations, to a subset of 22 relations. The differentiating factor of the model is that a set of base relations defines the direction relation anywhere in the field, and the conceptual neighborhood graph of the base relations offers the opportunity to exploit the strong inference of point-based direction reasoning for simple regions of arbitrary shape. Considers the tiles and pockets of same cardinal direction, while a coarse model provides a union of all possible qualitative direction values between a reference region and a target region

    Reasoning mechanism for cardinal direction relations

    Get PDF
    In the classical Projection-based Model for cardinal directions [6], a two-dimensional Euclidean space relative to an arbitrary single-piece region, a, is partitioned into the following nine tiles: North-West, NW(a); North, N(a); North-East, NE(a); West, W(a); Neutral Zone, O(a);East, E(a); South-West, SW(a); South, S(a); and South-East,SE(a). In our Horizontal and Vertical Constraints Model [9], [10] these cardinal directions are decomposed into sets corresponding to horizontal and vertical constraints. Composition is computed for these sets instead of the typical individual cardinal directions. In this paper, we define several whole and part direction relations followed by showing how to compose such relations using a formula introduced in our previous paper [10]. In order to develop a more versatile reasoning system for direction relations, we shall integrate mereology, topology, cardinal directions and include their negations as well. © 2010 Springer-Verlag

    Reasoning about Cardinal Directions between Extended Objects

    Get PDF
    Direction relations between extended spatial objects are important commonsense knowledge. Recently, Goyal and Egenhofer proposed a formal model, known as Cardinal Direction Calculus (CDC), for representing direction relations between connected plane regions. CDC is perhaps the most expressive qualitative calculus for directional information, and has attracted increasing interest from areas such as artificial intelligence, geographical information science, and image retrieval. Given a network of CDC constraints, the consistency problem is deciding if the network is realizable by connected regions in the real plane. This paper provides a cubic algorithm for checking consistency of basic CDC constraint networks, and proves that reasoning with CDC is in general an NP-Complete problem. For a consistent network of basic CDC constraints, our algorithm also returns a 'canonical' solution in cubic time. This cubic algorithm is also adapted to cope with cardinal directions between possibly disconnected regions, in which case currently the best algorithm is of time complexity O(n^5)

    A Hybrid Reasoning Model for “Whole and Part” Cardinal Direction Relations

    Get PDF
    We have shown how the nine tiles in the projection-based model for cardinal directions can be partitioned into sets based on horizontal and vertical constraints (called Horizontal and Vertical Constraints Model) in our previous papers (Kor and Bennett, 2003 and 2010). In order to come up with an expressive hybrid model for direction relations between two-dimensional single-piece regions (without holes), we integrate the well-known RCC-8 model with the above-mentioned model. From this expressive hybrid model, we derive 8 basic binary relations and 13 feasible as well as jointly exhaustive relations for the x- and y-directions, respectively. Based on these basic binary relations, we derive two separate composition tables for both the expressive and weak direction relations. We introduce a formula that can be used for the computation of the composition of expressive and weak direction relations between “whole or part” regions. Lastly, we also show how the expressive hybrid model can be used to make several existential inferences that are not possible for existing models

    An expressive hybrid model for the composition of cardinal directions

    Get PDF
    In our previous paper (Kor and Bennett, 2003), we have shown how the nine tiles in the projection-based model for cardinal directions can be partitioned into sets based on horizontal and vertical constraints (called Horizontal and Vertical Constraints Model). In order to come up with an expressive hybrid model for direction relations between two-dimensional single-piece regions (without holes), we integrate the well-known RCC-8 model with the above-mentioned model. From this expressive hybrid model, we derive 8 atomic binary relations and 13 feasible as well as jointly exhaustive relations for the x and y directions respectively. Based on these atomic binary relations, we derive two separate 8x8 composition tables for both the expressive and weak direction relations. We introduce a formula that can be used for the computation of the composition of expressive and weak direction relations between ‘whole or part’ regions. Lastly, we also show how the expressive hybrid model can be used to make several existential inferences that are not possible for existing models

    Computing and managing cardinal direction relations

    Full text link

    Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects

    Get PDF
    Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from multiple calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. We consider two different interpretations of the RCC8 algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation. In both interpretations, we show that reasoning with topological and directional information is decidable and remains in NP. Our computational complexity results unveil the significant differences between RA and CDC, and that between weak and strong RCC8 models. Take the combination of basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA constraints
    corecore