102 research outputs found

    Deep learning for fast and robust medical image reconstruction and analysis

    Get PDF
    Medical imaging is an indispensable component of modern medical research as well as clinical practice. Nevertheless, imaging techniques such as magnetic resonance imaging (MRI) and computational tomography (CT) are costly and are less accessible to the majority of the world. To make medical devices more accessible, affordable and efficient, it is crucial to re-calibrate our current imaging paradigm for smarter imaging. In particular, as medical imaging techniques have highly structured forms in the way they acquire data, they provide us with an opportunity to optimise the imaging techniques holistically by leveraging data. The central theme of this thesis is to explore different opportunities where we can exploit data and deep learning to improve the way we extract information for better, faster and smarter imaging. This thesis explores three distinct problems. The first problem is the time-consuming nature of dynamic MR data acquisition and reconstruction. We propose deep learning methods for accelerated dynamic MR image reconstruction, resulting in up to 10-fold reduction in imaging time. The second problem is the redundancy in our current imaging pipeline. Traditionally, imaging pipeline treated acquisition, reconstruction and analysis as separate steps. However, we argue that one can approach them holistically and optimise the entire pipeline jointly for a specific target goal. To this end, we propose deep learning approaches for obtaining high fidelity cardiac MR segmentation directly from significantly undersampled data, greatly exceeding the undersampling limit for image reconstruction. The final part of this thesis tackles the problem of interpretability of the deep learning algorithms. We propose attention-models that can implicitly focus on salient regions in an image to improve accuracy for ultrasound scan plane detection and CT segmentation. More crucially, these models can provide explainability, which is a crucial stepping stone for the harmonisation of smart imaging and current clinical practice.Open Acces

    Deep learning for accelerated magnetic resonance imaging

    Get PDF
    Medical imaging has aided the biggest advance in the medical domain in the last century. Whilst X-ray, CT, PET and ultrasound are a form of imaging that can be useful in particular scenarios, they each have disadvantages in cost, image quality, ease-of-use and ionising radiation. MRI is a slow imaging protocol which contributes to its high cost to run. However, MRI is a very versatile imaging protocol allowing images of varying contrast to be easily generated whilst not requiring the use of ionising radiation. If MRI can be made to be more efficient and smart, the effective cost of running MRI may be more affordable and accessible. The focus of this thesis is decreasing the acquisition time involved in MRI whilst maintaining the quality of the generated images and thus diagnosis. In particular, we focus on data-driven deep learning approaches that aid in the image reconstruction process and streamline the diagnostic process. We focus on three particular aspects of MR acquisition. Firstly, we investigate the use of motion estimation in the cine reconstruction process. Motion allows us to combine an abundance of imaging data in a learnt reconstruction model allowing acquisitions to be sped up by up to 50 times in extreme scenarios. Secondly, we investigate the possibility of using under-acquired MR data to generate smart diagnoses in the form of automated text reports. In particular, we investigate the possibility of skipping the imaging reconstruction phase altogether at inference time and instead, directly seek to generate radiological text reports for diffusion-weighted brain images in an effort to streamline the diagnostic process. Finally, we investigate the use of probabilistic modelling for MRI reconstruction without the use of fully-acquired data. In particular, we note that acquiring fully-acquired reference images in MRI can be difficult and nonetheless may still contain undesired artefacts that lead to degradation of the dataset and thus the training process. In this chapter, we investigate the possibility of performing reconstruction without fully-acquired references and furthermore discuss the possibility of generating higher quality outputs than that of the fully-acquired references.Open Acces

    DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction

    Get PDF
    Compressed Sensing Magnetic Resonance Imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging based fast MRI, which utilises multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training datasets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN) is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learning method to stabilise our U-Net based generator, which provides an endto-end network to reduce aliasing artefacts. To better preserve texture and edges in the reconstruction, we have coupled the adversarial loss with an innovative content loss. In addition, we incorporate frequency domain information to enforce similarity in both the image and frequency domains. We have performed comprehensive comparison studies with both conventional CSMRI reconstruction methods and newly investigated deep learning approaches. Compared to these methods, our DAGAN method provides superior reconstruction with preserved perceptual image details. Furthermore, each image is reconstructed in about 5 ms, which is suitable for real-time processing
    • …
    corecore