706 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 162, January 1977

    Get PDF
    This bibliography lists 189 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1976

    DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS

    Get PDF
    Electrocardiogram (ECG) data are usually used to diagnose cardiovascular disease (CVD) with the help of a revolutionary algorithm. Feature selection is a crucial step in the development of accurate and reliable diagnostic models for CVDs. This research introduces the dynamic threshold genetic algorithm (DTGA) algorithm, a type of genetic algorithm that is used for optimization problems and discusses its use in the context of feature selection. This research reveals the success of DTGA in selecting relevant ECG features that ultimately enhance accuracy and efficiency in the diagnosis of CVD. This work also proves the benefits of employing DTGA in clinical practice, including a reduction in the amount of time spent diagnosing patients and an increase in the precision with which individuals who are at risk of CVD can be identified

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    An optimization method based on genetic algorithm for heart rate variability analysis in the prediction of the onset of cardiac arrhythmia

    Get PDF
    Heart rate variability (HRV) is one of the common biological markers for developing a diagnostic system of cardiovascular disease. HRV analysis is used to extract statistical, geometrical, spectral and non-linear features in such diagnostic system. The diagnostic accuracy can be maximized by applying a feature selection step that selects an optimal feature subset from the extracted features. However, there are shortcomings in using only the feature selection for optimizing a diagnostic system that is based on HRV analysis. One of the main limitations is that the parameters of HRV feature extraction algorithms are not optimized for maximal performance. In addition, the feature selection process does not consider the feature cost and misclassification error of the selected optimal feature subset. Therefore, this thesis proposes a multi-objective optimization method that is based on the non-dominated sorting genetic algorithm to overcome these shortcomings in a cardiac arrhythmia prediction system. It optimizes the HRV feature extraction parameters, selects the best feature subset, and tunes the classifier parameters simultaneously for maximum prediction performance. The proposed optimization algorithm is applied in two cardiac arrhythmia cases, namely the prediction of the onsets of paroxysmal atrial fibrillation (PAF) and ventricular tachyarrhythmia (VTA). In the proposed approach, trade-off between multiple optimization objectives that contradict to each other are also analyzed. The optimization objectives include the feature count, measurement cost, prediction sensitivity, specificity and accuracy rate. The following results prove the effectiveness of the proposed optimization algorithm in the two arrhythmia cases. Firstly, the PAF onset prediction achieves an accuracy rate of 89.6%, which significantly outperforms most of the previous works. This accuracy rate is achieved even with the HRV signal length being reduced from the typical 30 minutes to just 5 minutes (a reduction of 83%). In the case of VTA onset prediction, the accuracy rate of 78.15% is achieved with 5-minute signal length. This result outperforms previous works. Another significant result is the sensitivity rate improvement with the tradeoff of lower specificity and accuracy rate for both PAF and VTA onset predictions. For instance, the sensitivity rate of the VTA onset prediction system improved from 81.48% to 92.59% while the accuracy rate reduced from 78.15% to 72.59%

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques

    Detecting Premature Ventricular Contraction by using Regulated Discriminant Analysis with very sparse training data

    Get PDF
    Pathological electrocardiogram is often used to diagnose abnormal cardiac disorders where accurate classification of the cardiac beat types is crucial for timely diagnosis of dangerous conditions. However, accurate, timely, and precise detection of arrhythmia-types like premature ventricular contraction is very challenging as these signals are multiform, i.e. a reliable detection of these requires expert annotations. In this paper, a multivariate statistical classifier that is able to detect premature ventricular contraction beats is presented. This novel classifier can be trained with a very sparse amount of expert annotated data. To enable this, the dimensionality of the feature vector is kept very low, it uses strong designed features and a regularization mechanism. This approach is compared to other classifiers by using the MIT-BIH arrhythmia database. It has been found that the average accuracy, specificity, and sensitivity are above 96%, which is superior given the sparse amount of training data

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal
    corecore