501 research outputs found

    Card-Based Protocols Using Unequal Division Shuffles

    Get PDF
    Card-based cryptographic protocols can perform secure computation of Boolean functions. In 2013, Cheung et al. presented a protocol that securely produces a hidden AND value using five cards; however, it fails with a probability of 1/2. The protocol uses an unconventional shuffle operation called an unequal division shuffle; after a sequence of five cards is divided into a two-card portion and a three-card portion, these two portions are randomly switched so that nobody knows which is which. In this paper, we first show that the protocol proposed by Cheung et al. securely produces not only a hidden AND value but also a hidden OR value (with a probability of 1/2). We then modify their protocol such that, even when it fails, we can still evaluate the AND value in the clear. Furthermore, we present two five-card copy protocols (which can duplicate a hidden value) using unequal division shuffle. Because the most efficient copy protocol currently known requires six cards, our new protocols improve upon the existing results. We also design a general copy protocol that produces multiple copies using an unequal division shuffle. Furthermore, we show feasible implementations of unequal division shuffles by the use of card cases

    Foundations for actively secure card-based cryptography

    Get PDF
    Card-based cryptography, as first proposed by den Boer [den Boer, 1989], enables secure multiparty computation using only a deck of playing cards. Many protocols as of yet come with an “honest-but-curious” disclaimer. However, modern cryptography aims to provide security also in the presence of active attackers that deviate from the protocol description. In the few places where authors argue for the active security of their protocols, this is done ad-hoc and restricted to the concrete operations needed, often using additional physical tools, such as envelopes or sliding cover boxes. This paper provides the first systematic approach to active security in card-based protocols. The main technical contribution concerns shuffling operations. A shuffle randomly permutes the cards according to a well-defined distribution but hides the chosen permutation from the players. We show how the large and natural class of uniform closed shuffles, which are shuffles that select a permutation uniformly at random from a permutation group, can be implemented using only a linear number of helping cards. This ensures that any protocol in the model of Mizuki and Shizuya [Mizuki and Shizuya, 2014] can be realized in an actively secure fashion, as long as it is secure in this abstract model and restricted to uniform closed shuffles. Uniform closed shuffles are already sufficient for securely computing any circuit [Mizuki and Sone, 2009]. In the process, we develop a more concrete model for card-based cryptographic protocols with two players, which we believe to be of independent interest

    The Minimum Number of Cards in Practical Card-based Protocols

    Get PDF
    The elegant “five-card trick” of den Boer (EUROCRYPT 1989) allows two players to securely compute a logical AND of two private bits, using five playing cards of symbols ♡\heartsuit and ♣\clubsuit. Since then, card-based protocols have been successfully put to use in classroom environments, vividly illustrating secure multiparty computation – and evoked research on the minimum number of cards needed for several functionalities. Securely computing arbitrary circuits needs protocols for negation, AND and bit copy in committed-format, where outputs are commitments again. Negation just swaps the bit\u27s cards, computing AND and copying a bit nn times can be done with six and 2n+22n+2 cards, respectively, using the simple protocols of Mizuki and Sone (FAW 2009). Koch, Walzer and HĂ€rtel (ASIACRYPT 2015) showed that five cards suffice for computing AND in finite runtime, albeit using relatively complex and unpractical shuffle operations. In this paper, we show that if we restrict shuffling to closed permutation sets, the six-card protocol is optimal in the finite-runtime setting. If we additionally assume a uniform distribution on the permutations in a shuffle, we show that restart-free four-card AND protocols are impossible. These shuffles are easy to perform even in an actively secure manner (Koch and Walzer, ePrint 2017). For copying bit commitments, the protocol of Nishimura et al. (ePrint 2017) needs only 2n+12n+1 cards, but performs a number of complex shuffling steps that is only finite in expectation. We show that it is impossible to go with less cards. If we require an a priori bound on the runtime, we show that the (2n+2)(2n+2)-card protocol is card-minimal

    Secure Implementations of a Random Bisection Cut

    Get PDF

    The Landscape of Optimal Card-based Protocols

    Get PDF
    In the area of card-based cryptography one devises small and easy to perform protocols for secure multiparty computation using a deck of physical playing cards with indistinguishable backs, which can be run if no trusted computer is available, or in classroom settings to illustrate privacy notions and secure computations. Initiated by the “Five-Card Trick” of den Boer (EUROCRYPT 1989) for computing the AND of two players\u27 bits, and the work of CrĂ©peau and Kilian (CRYPTO 1993) introducing committed format protocols which can be used as building blocks in larger computations, this is a field with a growing number of simple protocols. This paper devises two new AND protocols which are card-minimal w.r.t. specific requirements, and shows the card-minimality of the COPY protocol (necessary in arbitrary circuits, due to the physical nature of card-encoded bits) of Mizuki and Sone (FAW 2009) and the AND protocol of Abe et al. (APKC 2018). By this, we completely determine the landscape of card-minimal protocols with respect to runtime requirements (finite runtime or Las Vegas behavior with/without restarts) and practicality demands on the shuffling operations. Moreover, we systematize and extend techniques for proving lower bounds on the number of cards, which we believe is of independent interest

    Cryptographic Protocols from Physical Assumptions

    Get PDF
    Moderne Kryptographie erlaubt nicht nur, personenbezogene Daten im Internet zu schĂŒtzen oder sich fĂŒr bestimmte Dienste zu authentifizieren, sondern ermöglicht auch das Auswerten einer Funktion auf geheimen Eingaben mehrerer Parteien, ohne dass dabei etwas ĂŒber diese Eingaben gelernt werden kann (mit der Ausnahme von Informationen, die aus der Ausgabe und eigenen Eingaben effizient abgeleitet werden können). Kryptographische Protokolle dieser Art werden sichere Mehrparteienberechnung genannt und eignen sich fĂŒr ein breites Anwendungsspektrum, wie z.B. geheime Abstimmungen und Auktionen. Um die Sicherheit solcher Protokolle zu beweisen, werden Annahmen benötigt, die oft komplexitĂ€tstheoretischer Natur sind, beispielsweise, dass es schwierig ist, hinreichend große Zahlen zu faktorisieren. Sicherheitsannahmen, die auf physikalischen Prinzipien basieren, bieten im Gegensatz zu komplexitĂ€tstheoretischen Annahmen jedoch einige Vorteile: die Protokolle sind meist konzeptionell einfacher, die Sicherheit ist unabhĂ€ngig von den BerechnungskapazitĂ€ten des Angreifers, und die Funktionsweise und Sicherheit ist oft fĂŒr den Menschen leichter nachvollziehbar. (Zum Beispiel forderte das Bundesverfassungsgericht: „Beim Einsatz elektronischer WahlgerĂ€te mĂŒssen die wesentlichen Schritte der Wahlhandlung und der Ergebnisermittlung vom BĂŒrger zuverlĂ€ssig und ohne besondere Sachkenntnis ĂŒberprĂŒft werden können.“ (BVerfG, Urteil des Zweiten Senats vom 03. MĂ€rz 2009)). Beispiele fĂŒr solche Annahmen sind physikalisch getrennte oder unkorrumpierbare Hardware-Komponenten (vgl. Broadnax et al., 2018), Write-Only-GerĂ€te fĂŒr Logging, oder frei zu rubbelnde Felder, wie man sie von PIN-Briefen kennt. Auch die aus der Quantentheorie folgende Nicht-Duplizierbarkeit von QuantenzustĂ€nden ist eine physikalische Sicherheitsannahme, die z.B. verwendet wird, um nicht-klonbares „Quantengeld“ zu realisieren. In der vorliegenden Dissertation geht es neben Protokollen, die die Sicherheit und Isolation bestimmter einfacher Hardware-Komponenten als Vertrauensanker verwenden, im Besonderen um kryptographischen Protokolle fĂŒr die sichere Mehrparteienberechnung, die mit Hilfe physikalischer Spielkarten durchgefĂŒhrt werden. Die Sicherheitsannahme besteht darin, dass die Karten ununterscheidbare RĂŒckseiten haben und, dass bestimmte Mischoperationen sicher durchgefĂŒhrt werden können. Eine Anwendung dieser Protokolle liegt also in der Veranschaulichung von Kryptographie und in der Ermöglichung sicherer Mehrparteienberechnungen, die gĂ€nzlich ohne Computer ausgefĂŒhrt werden können. Ein Ziel in diesem Bereich der Kryptographie ist es, Protokolle anzugeben, die möglichst wenige Karten benötigen – und sie als optimal in diesem Sinne zu beweisen. AbhĂ€ngig von Anforderungen an das Laufzeitverhalten (endliche vs. lediglich im Erwartungswert endliche Laufzeit) und an die PraktikabilitĂ€t der eingesetzten Mischoperationen, ergeben sich unterschiedliche untere Schranken fĂŒr die mindestens benötigte Kartenanzahl. Im Rahmen der Arbeit wird fĂŒr jede Kombination dieser Anforderungen ein UND-Protokoll – ein logisches UND zweier in Karten codierter Bits; dieses ist zusammen mit der Negation und dem Kopieren von Bits hinreichend fĂŒr die Realisierung allgemeiner Schaltkreise – konstruiert oder in der Literatur identifiziert, das mit der minimalen Anzahl an Karten auskommt, und dies auch als Karten-minimal bewiesen. Insgesamt ist UND mit vier (fĂŒr erwartet endliche Laufzeit (Koch, Walzer und HĂ€rtel, 2015; Koch, 2018)), fĂŒnf (fĂŒr praktikable Mischoperationen oder endliche Laufzeit (Koch, Walzer und HĂ€rtel, 2015; Koch, 2018)) oder sechs Karten (fĂŒr endliche Laufzeit und gleichzeitig praktikable Mischoperationen (Kastner et al., 2017)) möglich und optimal. FĂŒr die notwendigen Struktureinsichten wurden so-genannte „Zustandsdiagramme“ mit zugehörigen KalkĂŒlregeln entwickelt, die eine graphenbasierte Darstellung aller möglichen ProtokolldurchlĂ€ufe darstellen und an denen Korrektheit und Sicherheit der Protokolle direkt ablesbar sind (Koch, Walzer und HĂ€rtel, 2015; Kastner et al., 2017). Dieser KalkĂŒl hat seitdem eine breite Verwendung in der bereichsrelevanten Literatur gefunden. (Beweise fĂŒr untere Schranken bzgl. der Kartenanzahl werden durch den KalkĂŒl zu Beweisen, die zeigen, dass bestimmte ProtokollzustĂ€nde in einer bestimmten kombinatorischen Graphenstruktur nicht erreichbar sind.) Mit Hilfe des KalkĂŒls wurden Begriffe der Spielkartenkryptographie als C-Programm formalisiert und (unter bestimmten EinschrĂ€nkungen) mit einem „Software Bounded Model Checking“-Ansatz die LĂ€ngenminimalitĂ€t eines kartenminimalen UND-Protokolls bewiesen (Koch, Schrempp und Kirsten, 2019). DarĂŒber hinaus werden konzeptionell einfache Protokolle fĂŒr den Fall einer sicheren Mehrparteienberechnung angegeben, bei der sogar zusĂ€tzlich die zu berechnende Funktion geheim bleiben soll (Koch und Walzer, 2018), und zwar fĂŒr jedes der folgenden Berechnungsmodelle: (universelle) Schaltkreise, binĂ€re Entscheidungsdiagramme, Turingmaschinen und RAM-Maschinen. Es wird zudem untersucht, wie Karten-basierte Protokolle so ausgefĂŒhrt werden können, dass die einzige Interaktion darin besteht, dass andere Parteien die korrekte AusfĂŒhrung ĂŒberwachen. Dies ermöglicht eine (schwach interaktive) Programm-Obfuszierung, bei der eine Partei ein durch Karten codiertes Programm auf eigenen Eingaben ausfĂŒhren kann, ohne etwas ĂŒber dessen interne Funktionsweise zu lernen, das ĂŒber das Ein-/Ausgabeverhalten hinaus geht. Dies ist ohne derartige physikalische Annahmen i.A. nicht möglich. ZusĂ€tzlich wird eine Sicherheit gegen Angreifer, die auch vom Protokoll abweichen dĂŒrfen, formalisiert und es wird eine Methode angegeben um unter möglichst schwachen Sicherheitsannahmen ein passiv sicheres Protokoll mechanisch in ein aktiv sicheres zu transformieren (Koch und Walzer, 2017). Eine weitere, in der Dissertation untersuchte physikalische Sicherheitsannahme, ist die Annahme primitiver, unkorrumpierbarer Hardware-Bausteine, wie z.B. einen TAN-Generator. Dies ermöglicht z.B. eine sichere Authentifikation des menschlichen Nutzers ĂŒber ein korrumpiertes Terminal, ohne dass der Nutzer selbst kryptographische Berechnungen durchfĂŒhren muss (z.B. große Primzahlen zu multiplizieren). Dies wird am Beispiel des Geldabhebens an einem korrumpierten Geldautomaten mit Hilfe eines als sicher angenommenen zweiten GerĂ€ts (Achenbach et al., 2019) und mit möglichst schwachen Anforderungen an die vorhandenen KommunikationskanĂ€le gelöst. Da das angegebene Protokoll auch sicher ist, wenn es beliebig mit anderen gleichzeitig laufenden Protokollen ausgefĂŒhrt wird (also sogenannte Universelle Komponierbarkeit aufweist), es modular entworfen wurde, und die Sicherheitsannahme glaubwĂŒrdig ist, ist die Funktionsweise fĂŒr den Menschen transparent und nachvollziehbar. Insgesamt bildet die Arbeit durch die verschiedenen Karten-basierten Protokolle, KalkĂŒle und systematisierten Beweise fĂŒr untere Schranken bzgl. der Kartenanzahl, sowie durch Ergebnisse zur sicheren Verwendung eines nicht-vertrauenswĂŒrdigen Terminals, und einer Einordnung dieser in eine systematische Darstellung der verschiedenen, in der Kryptographie verwendeten physikalischen Annahmen, einen wesentlichen Beitrag zur physikalisch-basierten Kryptographie

    ç‰©ç†çš„é“ć…·ă‚’ç”šă„ă‚‹æš—ć·ăƒ—ăƒ­ăƒˆă‚łăƒ«

    Get PDF
    Tohoku University曜æ č秀昭èȘČ

    Post-Election Audits: Restoring Trust in Elections

    Get PDF
    With the intention of assisting legislators, election officials and the public to make sense of recent literature on post-election audits and convert it into realistic audit practices, the Brennan Center and the Samuelson Law, Technology and Public Policy Clinic at Boalt Hall School of Law (University of California Berkeley) convened a blue ribbon panel (the "Audit Panel") of statisticians, voting experts, computer scientists and several of the nation's leading election officials. Following a review of the literature and extensive consultation with the Audit Panel, the Brennan Center and the Samuelson Clinic make several practical recommendations for improving post-election audits, regardless of the audit method that a jurisdiction ultimately decides to adopt
    • 

    corecore