1,121 research outputs found

    Dual sensing-actuation artificial muscle based on polypyrrole-carbon nanotube composite

    Get PDF
    Dual sensing artificial muscles based on conducting polymer are faradaic motors driven by electrochemical reactions, which announce the development of proprioceptive devices. The applicability of different composites has been investigated with the aim to improve the performance. Addition of carbon nanotubes may reduce irreversible reactions. We present the testing of a dual sensing artificial muscle based on a conducting polymer and carbon nanotubes composite. Large bending motions (up to 127 degrees) in aqueous solution and simultaneously sensing abilities of the operation conditions are recorded. The sensing and actuation equations are derived for incorporation into a control system.The research was supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 641822

    POLYMER COMPOSITES FOR SENSING AND ACTUATION

    Get PDF
    This thesis concerns materials for polymer actuators and mechanical sensors. Polymer actuators are a class of artificial muscle with promising actuation performance; however, they are currently limited by the materials used in their fabrication. The metal-foil type mechanical strain gauges are commercially available and well understood; however, typically have gauge factors less than 5.5 [1], cannot be patterned into custom shapes, and only monitor small areas. New materials provide opportunities to improve the performance of both polymer actuators and mechanical sensors. The aim of this research was to develop, characterize, and implement such materials. Specifically, this thesis describes novel composites of exfoliated graphite (EG) blended with elastomeric hosts. The mechanical and electrical properties of these composites were tailored for two specific applications by modifying the EG loading and the elastomer host: compliant electrodes and strain gauges. Compliant electrodes were demonstrated that had ultimate tensile strains greater than 300% and that could withstand more than 106 strain cycles. Composites fabricated with polydimethylsiloxane (PDMS) exhibited conductivities up to 0.2 S/cm, and having tangent moduli less than 1.4 MPa. This modulus is the lowest reported for loaded elastomers above the percolation threshold. Conductivity was increased to more than 12.5 S/cm by fabricating composites with polyisoprene (latex) elastomers, and the tangent moduli remained less than 5 MPa. Actuation strains of polymer actuators were increased 3 fold using the composites as electrodes, compared to using carbon-grease electrodes. This was due to the composites ability to be spincoated with thin insulating layers of PDMS, allowing 30% higher electric fields to be applied. Strain gauges fabricated with these composites exhibited gauge factors (GFs) > 27,000, to the authors knowledge this is the highest GF ever reported. The effects of humidity, temperature and strain were investigated

    Artificial Muscles

    Get PDF
    Course material for "Artificial Muscles" e-course

    Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance

    Get PDF
    Among the broad class of electro-active polymers, dielectric elastomer actuators represent a rapidly growing technology for electromechanical transduction. In order to further develop this applied science, the high driving voltages currently needed must be reduced. For this purpose, one of the most widely considered approaches is based on making elastomeric composites with highly polarizable fillers in order to increase the dielectric constant while maintaining both low dielectric losses and high-mechanical compliance. In this work, multi-wall carbon nanotubes were first functionalized by grafting either acrylonitrile or diurethane monoacrylate oligomers, and then dispersed into a polyurethane matrix to make dielectric elastomer composites. The procedures for the chemical functionalization of carbon nanotubes and proper characterizations of the obtained products are provided in detail. The consequences of the use of chemically modified carbon nanotubes as a filler, in comparison to using unmodified ones, were studied in terms of dielectric, mechanical and electromechanical response. In particular, an increment of the dielectric constant was observed for all composites throughout the investigated frequency spectrum, but only in the cases of modified carbon nanotubes did the loss factor remain almost unchanged with respect to the simple matrix, indicating that conductive percolation paths did not arise in such systems. An effective improvement in the actuation strain was observed for samples loaded with functionalized carbon nanotubes

    Carbon Nanostructures for Actuators: An Overview of Recent Developments

    Get PDF
    In recent decades, micro and nanoscale technologies have become cutting-edge frontiers in material science and device developments. This worldwide trend has induced further improvements in actuator production with enhanced performance. A main role has been played by nanostructured carbon-based materials, i.e., carbon nanotubes and graphene, due to their intrinsic properties and easy functionalization. Moreover, the nanoscale decoration of these materials has led to the design of doped and decorated carbon-based devices effectively used as actuators incorporating metals and metal-based structures. This review provides an overview and discussion of the overall process for producing AC actuators using nanostructured, doped, and decorated carbon materials. It highlights the differences and common aspects that make carbon materials one of the most promising resources in the field of actuators

    Dielectric Elastomer Sensors

    Get PDF
    Dielectric elastomers (DEs) represent a class of electroactive polymers (EAPs) that exhibit a significant electromechanical effect, which has made them very attractive over the last several decades for use as soft actuators, sensors and generators. Based on the principle of a plane‐parallel capacitor, dielectric elastomer sensors consist of a flexible and stretchable dielectric polymer sandwiched between two compliant electrodes. With the development of elastic polymers and stretchable conductors, flexible and sensitive dielectric elastomer tactile sensors, similar to human skin, have been used for measuring mechanical deformations, such as pressure, strain, shear and torsion. For high sensitivity and fast response, air gaps and microstructural dielectric layers are employed in pressure sensors or multiaxial force sensors. Multimodal dielectric elastomer sensors have been reported that can detect mechanical deformation but can also sense temperature, humidity, as well as chemical and biological stimulation in human‐activity monitoring and personal healthcare. Hence, dielectric elastomer sensors have great potential for applications in soft robotics, wearable devices, medical diagnostic and structural health monitoring, because of their large deformation, low cost, ease of fabrication and ease of integration into monitored structures

    Freeform Fabrication of Electroactive Polymer Actuators and Electromechanical Devices

    Get PDF
    In pursuit of the goal of producing complete electromechanical systems entirely via solid freeform fabrication, we are developing a library of mutually compatible, functional, freeform elements. Several essential elements – actuation, sensing, and control electronics - still remain to be incorporated into this library. Conducting polymers (CP) are a class of materials which can be used to produce all of these functionalities. Meanwhile, research into actuatable “smart” materials has produced other candidate materials for freeform fabricated actuators that are compatible with our library. We have succeeded in manually producing air-operable actuators that have processing and operating requirements that are compatible with our power source and mechanical component library elements. A survey of candidate actuator materials is presented, experiments performed with two types of actuator materials are described, and complete SFF-producible actuator devices are demonstrated.Mechanical Engineerin

    Design, development and characterisation of piezoresistive and capacitive polymeric pressure sensors for use in compression hosiery

    Get PDF
    The work in this thesis was focused in developing a flexible and cost-effective pressure sensor capable of detecting pressure variations within the low working range (0-6kPa) of compression hosiery. For this cause, both piezoresistive and capacitive pressure sensors were developed and characterised, utilising conductive and non-conductive polymeric elements to sense compressive loads. In the first case, the developed piezoresistive sensor is composed of a conductive filler - polymer composite, with a force-dependent conductivity, encapsulated in between a structured and unstructured configuration of electrodes. Initially, as the sensing element of the sensor a multi-walled carbon nanotubes-polydimethylsiloxane (MWCNT-PDMS) composite was tested. A fabrication process is also proposed for developing the MWCNT-PDMS composite which involves a series of successive direct ultrasonications and shear mixing in order to disperse the two constituents of the composite, with the use of an organic solvent. Developing the composite over a range of different filler concentrations revealed a sharp step-like conductivity behaviour, typical amongst percolating composites. The MWCNT-PDMS sensor exhibited a positive piezoresistive response when subjected to compression, which was substantially enhanced when structured electrode layers were utilised. A Quantum Tunnelling Composite (QTC) material was also tested as the sensing material, which displays a large negative piezoresistive response when deformed. The QTC pressure sensor exhibited an improved performance, which was similarly significantly increased when a structured electrode was employed. In the second case, a parallel-plate capacitive pressure sensor was developed and characterised, which successfully provided a pressure sensitivity within the working range of compression hosiery. The sensor employs an ultra-thin PDMS blend film, with tuneable Young’s modulus, as the dielectric medium of the capacitor, bonded in between two rigid copper-coated glass layers. A casting process is also presented, involving the use of a sacrificial mould, in order to pattern the polymeric film with a micro-pillar structure to assist the deformation of the medium under compressive loads. The performance of the sensor with regards to the polymeric film thickness, structure and mechanical softness was explored. Overall, the combination of an ultra-thin dielectric medium with a very low Young’s modulus and a microstructured surface resulted in a capacitive pressure sensor with a good performance within the desired pressure regime
    corecore