126,692 research outputs found

    Capturing the relative distribution of features for action recognition

    Get PDF
    This paper presents an approach to the categorisation of spatio-temporal activity in video, which is based solely on the relative distribution of feature points. Introducing a Relative Motion Descriptor for actions in video, we show that the spatio-temporal distribution of features alone (without explicit appearance information) effectively describes actions, and demonstrate performance consistent with state-of-the-art. Furthermore, we propose that for actions where noisy examples exist, it is not optimal to group all action examples as a single class. Therefore, rather than engineering features that attempt to generalise over noisy examples, our method follows a different approach: We make use of Random Sampling Consensus (RANSAC) to automatically discover and reject outlier examples within classes. We evaluate the Relative Motion Descriptor and outlier rejection approaches on four action datasets, and show that outlier rejection using RANSAC provides a consistent and notable increase in performance, and demonstrate superior performance to more complex multiple-feature based approaches

    Learning Latent Super-Events to Detect Multiple Activities in Videos

    Full text link
    In this paper, we introduce the concept of learning latent super-events from activity videos, and present how it benefits activity detection in continuous videos. We define a super-event as a set of multiple events occurring together in videos with a particular temporal organization; it is the opposite concept of sub-events. Real-world videos contain multiple activities and are rarely segmented (e.g., surveillance videos), and learning latent super-events allows the model to capture how the events are temporally related in videos. We design temporal structure filters that enable the model to focus on particular sub-intervals of the videos, and use them together with a soft attention mechanism to learn representations of latent super-events. Super-event representations are combined with per-frame or per-segment CNNs to provide frame-level annotations. Our approach is designed to be fully differentiable, enabling end-to-end learning of latent super-event representations jointly with the activity detector using them. Our experiments with multiple public video datasets confirm that the proposed concept of latent super-event learning significantly benefits activity detection, advancing the state-of-the-arts.Comment: CVPR 201
    • …
    corecore