101 research outputs found

    Biomedical Signal Analysis of the Brain and Systemic Physiology

    Full text link
    Near-infrared spectroscopy (NIRS) is a non-invasive and easy-to-use diagnostic technique that enables real-time tissue oxygenation measurements applied in various contexts and for different purposes. Continuous monitoring with NIRS of brain oxygenation, for example, in neonatal intensive care units (NICUs), is essential to prevent lifelong disabilities in newborns. Moreover, NIRS can be applied to observe brain activity associated with hemodynamic changes in blood flow due to neurovascular coupling. In the latter case, NIRS contributes to studying cognitive processes allowing to conduct experiments in natural and socially interactive contexts of everyday life. However, it is essential to measure systemic physiology and NIRS signals concurrently. The combination of brain and body signals enables to build sophisticated systems that, for example, reduce the false alarms that occur in NICUs. Furthermore, since fNIRS signals are influenced by systemic physiology, it is essential to understand how the latter impacts brain signals in functional studies. There is an interesting brain body coupling that has rarely been investigated yet. To take full advantage of these brain and body data, the aim of this thesis was to develop novel approaches to analyze these biosignals to extract the information and identify new patterns, to solve different research or clinical questions. For this the development of new methodological approaches and sophisticated data analysis is necessary, because often the identification of these patterns is challenging or not possible with traditional methods. In such cases, automatic machine learning (ML) techniques are beneficial. The first contribution of this work was to assess the known systemic physiology augmented (f)NIRS approach for clinical use and in everyday life. Based on physiological and NIRS signals of preterm infants, an ML-based classification system has been realized, able to reduce the false alarms in NICUs by providing a high sensitivity rate. In addition, the SPA-fNIRS approach was further applied in adults during a breathing task. The second contribution of this work was the advancement of the classical fNIRS hyperscanning method by adding systemic physiology measures. For this, new biosignal analyses in the time-frequency domain have been developed and tested in a simple nonverbal synchrony task between pairs of subjects. Furthermore, based on SPA-fNIRS hyperscanning data, another ML-based system was created, which is able distinguish familiar and unfamiliar pairs with high accuracy. This approach enables to determine the strength of social bonds in a wide range of social interaction contexts. In conclusion, we were the first group to perform a SPA-fNIRS hyperscanning study capturing changes in cerebral oxygenation and hemodynamics as well as systemic physiology in two subjects simultaneously. We applied new biosignals analysis methods enabling new insights into the study of social interactions. This work opens the door to many future inter-subjects fNIRS studies with the benefit of assessing the brain-to-brain, the brain-to-body, and body-to-body coupling between pairs of subjects

    Characterizing reproducibility of cerebral hemodynamic responses when applying short-channel regression in functional near-infrared spectroscopy.

    Get PDF
    Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on the group level and hence is an excellent research tool, but the reproducibility on the single-subject level is still insufficient, challenging the use for clinical applications. Aim: We investigated the effect of short-channel regression (SCR) as an approach to obtain fNIRS measurements with higher reproducibility on a single-subject level. SCR simultaneously considers contributions from long- and short-separation channels and removes confounding physiological changes through the regression of the short-separation channel information. Approach: We performed a test-retest study with a hand grasping task in 15 healthy subjects using a wearable fNIRS device, optoHIVE. Relevant brain regions were localized with transcranial magnetic stimulation to ensure correct placement of the optodes. Reproducibility was assessed by intraclass correlation, correlation analysis, mixed effects modeling, and classification accuracy of the hand grasping task. Further, we characterized the influence of SCR on reproducibility. Results: We found a high reproducibility of fNIRS measurements on a single-subject level ( and correlation ). SCR increased the reproducibility from 0.64 to 0.81 ( ) but did not affect classification (85% overall accuracy). Significant intersubject variability in the reproducibility was observed and was explained by Mayer wave oscillations and low raw signal strength. The raw signal-to-noise ratio (threshold at 40 dB) allowed for distinguishing between persons with weak and strong activations. Conclusions: We report, for the first time, that fNIRS measurements are reproducible on a single-subject level using our optoHIVE fNIRS system and that SCR improves reproducibility. In addition, we give a benchmark to easily assess the ability of a subject to elicit sufficiently strong hemodynamic responses. With these insights, we pave the way for the reliable use of fNIRS neuroimaging in single subjects for neuroscientific research and clinical applications
    • …
    corecore