24,773 research outputs found

    Computational methods in cancer gene networking

    Get PDF
    In the past few years, many high-throughput techniques have been developed and applied to biological studies. These techniques such as “next generation” genome sequencing, chip-on-chip, microarray and so on can be used to measure gene expression and gene regulatory elements in a genome-wide scale. Moreover, as these technologies become more affordable and accessible, they have become a driving force in modern biology. As a result, huge amount biological data have been produced, with the expectation of increasing number of such datasets to be generated in the future. High-throughput data are more comprehensive and unbiased, but ‘real signals’ or biological insights, molecular mechanisms and biological principles are buried in the flood of data. In current biological studies, the bottleneck is no longer a lack of data, but the lack of ingenuity and computational means to extract biological insights and principles by integrating knowledge and high-throughput data. 

Here I am reviewing the concepts and principles of network biology and the computational methods which can be applied to cancer research. Furthermore, I am providing a practical guide for computational analysis of cancer gene networks

    Protein-protein interactions: network analysis and applications in drug discovery

    Get PDF
    Physical interactions among proteins constitute the backbone of cellular function, making them an attractive source of therapeutic targets. Although the challenges associated with targeting protein-protein interactions (PPIs) -in particular with small molecules are considerable, a growing number of functional PPI modulators is being reported and clinically evaluated. An essential starting point for PPI inhibitor screening or design projects is the generation of a detailed map of the human interactome and the interactions between human and pathogen proteins. Different routes to produce these biological networks are being combined, including literature curation and computational methods. Experimental approaches to map PPIs mainly rely on the yeast two-hybrid (Y2H) technology, which have recently shown to produce reliable protein networks. However, other genetic and biochemical methods will be essential to increase both coverage and resolution of current protein networks in order to increase their utility towards the identification of novel disease-related proteins and PPIs, and their potential use as therapeutic targets

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    A model of large-scale proteome evolution

    Get PDF
    The next step in the understanding of the genome organization, after the determination of complete sequences, involves proteomics. The proteome includes the whole set of protein-protein interactions, and two recent independent studies have shown that its topology displays a number of surprising features shared by other complex networks, both natural and artificial. In order to understand the origins of this topology and its evolutionary implications, we present a simple model of proteome evolution that is able to reproduce many of the observed statistical regularities reported from the analysis of the yeast proteome. Our results suggest that the observed patterns can be explained by a process of gene duplication and diversification that would evolve proteome networks under a selection pressure, favoring robustness against failure of its individual components

    From genes to behavior: placing cognitive models in the context of biological pathways.

    Get PDF
    Connecting neural mechanisms of behavior to their underlying molecular and genetic substrates has important scientific and clinical implications. However, despite rapid growth in our knowledge of the functions and computational properties of neural circuitry underlying behavior in a number of important domains, there has been much less progress in extending this understanding to their molecular and genetic substrates, even in an age marked by exploding availability of genomic data. Here we describe recent advances in analytical strategies that aim to overcome two important challenges associated with studying the complex relationship between genes and behavior: (i) reducing distal behavioral phenotypes to a set of molecular, physiological, and neural processes that render them closer to the actions of genetic forces, and (ii) striking a balance between the competing demands of discovery and interpretability when dealing with genomic data containing up to millions of markers. Our proposed approach involves linking, on one hand, models of neural computations and circuits hypothesized to underlie behavior, and on the other hand, the set of the genes carrying out biochemical processes related to the functioning of these neural systems. In particular, we focus on the specific example of value-based decision-making, and discuss how such a combination allows researchers to leverage existing biological knowledge at both neural and genetic levels to advance our understanding of the neurogenetic mechanisms underlying behavior

    A Biologically Informed Hylomorphism

    Get PDF
    Although contemporary metaphysics has recently undergone a neo-Aristotelian revival wherein dispositions, or capacities are now commonplace in empirically grounded ontologies, being routinely utilised in theories of causality and modality, a central Aristotelian concept has yet to be given serious attention – the doctrine of hylomorphism. The reason for this is clear: while the Aristotelian ontological distinction between actuality and potentiality has proven to be a fruitful conceptual framework with which to model the operation of the natural world, the distinction between form and matter has yet to similarly earn its keep. In this chapter, I offer a first step toward showing that the hylomorphic framework is up to that task. To do so, I return to the birthplace of that doctrine - the biological realm. Utilising recent advances in developmental biology, I argue that the hylomorphic framework is an empirically adequate and conceptually rich explanatory schema with which to model the nature of organism
    • …
    corecore