181,095 research outputs found

    Context modeling and constraints binding in web service business processes

    Get PDF
    Context awareness is a principle used in pervasive services applications to enhance their exibility and adaptability to changing conditions and dynamic environments. Ontologies provide a suitable framework for context modeling and reasoning. We develop a context model for executable business processes { captured as an ontology for the web services domain. A web service description is attached to a service context profile, which is bound to the context ontology. Context instances can be generated dynamically at services runtime and are bound to context constraint services. Constraint services facilitate both setting up constraint properties and constraint checkers, which determine the dynamic validity of context instances. Data collectors focus on capturing context instances. Runtime integration of both constraint services and data collectors permit the business process to achieve dynamic business goals

    Dynamic integration of context model constraints in web service processes

    Get PDF
    Autonomic Web service composition has been a challenging topic for some years. The context in which composition takes places determines essential aspects. A context model can provide meaningful composition information for services process composition. An ontology-based approach for context information integration is the basis of a constraint approach to dynamically integrate context validation into service processes. The dynamic integration of context constraints into an orchestrated service process is a necessary direction to achieve autonomic service composition

    A design recording framework to facilitate knowledge sharing in collaborative software engineering

    Get PDF
    This paper describes an environment that allows a development team to share knowledge about software artefacts by recording decisions and rationales as well as supporting the team in formulating and maintaining design constraints. It explores the use of multi-dimensional design spaces for capturing various issues arising during development and presenting this meta-information using a network of views. It describes a framework to underlie the collaborative environment and shows the supporting architecture and its implementation. It addresses how the artefacts and their meta-information are captured in a non-invasive way and shows how an artefact repository is embedded to store and manage the artefacts

    Addressing performance requirements in the FDT-based design of distributed systems

    Get PDF
    The development of distributed systems is generally regarded as a complex and costly task, and for this reason formal description techniques such as LOTOS and ESTELLE (both standardized by the ISO) are increasingly used in this process. Our experience is that LOTOS can be exploited at many stages on the design trajectory, from requirements specification to implementation, but that the language elements do not allow direct formalization of performance requirements. To avoid duplication of effort by using two formalisms with distinct approaches, we propose a design method that incorporates performance constraints in an heuristic but effective manner

    The TASTE Toolset: turning human designed heterogeneous systems into computer built homogeneous software.

    Get PDF
    The TASTE tool-set results from spin-off studies of the ASSERT project, which started in 2004 with the objective to propose innovative and pragmatic solutions to develop real-time software. One of the primary targets was satellite flight software, but it appeared quickly that their characteristics were shared among various embedded systems. The solutions that we developed now comprise a process and several tools ; the development process is based on the idea that real-time, embedded systems are heterogeneous by nature and that a unique UML-like language was not helping neither their construction, nor their validation. Rather than inventing yet another "ultimate" language, TASTE makes the link between existing and mature technologies such as Simulink, SDL, ASN.1, C, Ada, and generates complete, homogeneous software-based systems that one can straightforwardly download and execute on a physical target. Our current prototype is moving toward a marketed product, and sequel studies are already in place to support, among others, FPGA systems

    Modeling of system knowledge for efficient agile manufacturing : tool evaluation, selection and implementation scenario in SMEs

    Get PDF
    In the manufacturing world, knowledge is fundamental in order to achieve effective and efficient real time decision making. In order to make manufacturing system knowledge available to the decision maker it has to be first captured and then modelled. Therefore tools that provide a suitable means for capturing and representation of manufacturing system knowledge are required in several types of industrial sectors and types of company’s (large, SME). A literature review about best practice for capturing requirements for simulation development and system knowledge modeling has been conducted. The aim of this study was to select the best tool for manufacturing system knowledge modelling in an open-source environment. In order to select this tool, different criteria were selected, based on which several tools were analyzed and rated. An exemplary use case was then developed using the selected tool, Systems Modeling Language (SysML). Therefore, the best practice has been studied, evaluated, selected and then applied to two industrial use cases by the use of a selected opens source tool.peer-reviewe

    Framework Programmable Platform for the advanced software development workstation: Framework processor design document

    Get PDF
    The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated

    Designing Traceability into Big Data Systems

    Full text link
    Providing an appropriate level of accessibility and traceability to data or process elements (so-called Items) in large volumes of data, often Cloud-resident, is an essential requirement in the Big Data era. Enterprise-wide data systems need to be designed from the outset to support usage of such Items across the spectrum of business use rather than from any specific application view. The design philosophy advocated in this paper is to drive the design process using a so-called description-driven approach which enriches models with meta-data and description and focuses the design process on Item re-use, thereby promoting traceability. Details are given of the description-driven design of big data systems at CERN, in health informatics and in business process management. Evidence is presented that the approach leads to design simplicity and consequent ease of management thanks to loose typing and the adoption of a unified approach to Item management and usage.Comment: 10 pages; 6 figures in Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015), Singapore July 2015. arXiv admin note: text overlap with arXiv:1402.5764, arXiv:1402.575
    corecore