487 research outputs found

    Using clustering techniques for intelligent camera-based user interfaces

    Get PDF
    The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential

    Reading as Active Sensing: A Computational Model of Gaze Planning in Word Recognition

    Get PDF
    We offer a computational model of gaze planning during reading that consists of two main components: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    A Critical Analysis of Payload Anomaly-Based Intrusion Detection Systems

    Get PDF
    Examining payload content is an important aspect of network security, particularly in today\u27s volatile computing environment. An Intrusion Detection System (IDS) that simply analyzes packet header information cannot adequately secure a network from malicious attacks. The alternative is to perform deep-packet analysis using n-gram language parsing and neural network technology. Self Organizing Map (SOM), PAYL over Self-Organizing Maps for Intrusion Detection (POSEIDON), Anomalous Payload-based Network Intrusion Detection (PAYL), and Anagram are next-generation unsupervised payload anomaly-based IDSs. This study examines the efficacy of each system using the design-science research methodology. A collection of quantitative data and qualitative features exposes their strengths and weaknesses

    Temporal contextual descriptors and applications to emotion analysis.

    Get PDF
    The current trends in technology suggest that the next generation of services and devices allows smarter customization and automatic context recognition. Computers learn the behavior of the users and can offer them customized services depending on the context, location, and preferences. One of the most important challenges in human-machine interaction is the proper understanding of human emotions by machines and automated systems. In the recent years, the progress made in machine learning and pattern recognition led to the development of algorithms that are able to learn the detection and identification of human emotions from experience. These algorithms use different modalities such as image, speech, and physiological signals to analyze and learn human emotions. In many settings, the vocal information might be more available than other modalities due to widespread of voice sensors in phones, cars, and computer systems in general. In emotion analysis from speech, an audio utterance is represented by an ordered (in time) sequence of features or a multivariate time series. Typically, the sequence is further mapped into a global descriptor representative of the entire utterance/sequence. This descriptor is used for classification and analysis. In classic approaches, statistics are computed over the entire sequence and used as a global descriptor. This often results in the loss of temporal ordering from the original sequence. Emotion is a succession of acoustic events. By discarding the temporal ordering of these events in the mapping, the classic approaches cannot detect acoustic patterns that lead to a certain emotion. In this dissertation, we propose a novel feature mapping framework. The proposed framework maps temporally ordered sequence of acoustic features into data-driven global descriptors that integrate the temporal information from the original sequence. The framework contains three mapping algorithms. These algorithms integrate the temporal information implicitly and explicitly in the descriptor\u27s representation. In the rst algorithm, the Temporal Averaging Algorithm, we average the data temporally using leaky integrators to produce a global descriptor that implicitly integrates the temporal information from the original sequence. In order to integrate the discrimination between classes in the mapping, we propose the Temporal Response Averaging Algorithm which combines the temporal averaging step of the previous algorithm and unsupervised learning to produce data driven temporal contextual descriptors. In the third algorithm, we use the topology preserving property of the Self-Organizing Maps and the continuous nature of speech to map a temporal sequence into an ordered trajectory representing the behavior over time of the input utterance on a 2-D map of emotions. The temporal information is integrated explicitly in the descriptor which makes it easier to monitor emotions in long speeches. The proposed mapping framework maps speech data of different length to the same equivalent representation which alleviates the problem of dealing with variable length temporal sequences. This is advantageous in real time setting where the size of the analysis window can be variable. Using the proposed feature mapping framework, we build a novel data-driven speech emotion detection and recognition system that indexes speech databases to facilitate the classification and retrieval of emotions. We test the proposed system using two datasets. The first corpus is acted. We showed that the proposed mapping framework outperforms the classic approaches while providing descriptors that are suitable for the analysis and visualization of humans’ emotions in speech data. The second corpus is an authentic dataset. In this dissertation, we evaluate the performances of our system using a collection of debates. For that purpose, we propose a novel debate collection that is one of the first initiatives in the literature. We show that the proposed system is able to learn human emotions from debates

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    Detection and Generalization of Spatio-temporal Trajectories for Motion Imagery

    Get PDF
    In today\u27s world of vast information availability users often confront large unorganized amounts of data with limited tools for managing them. Motion imagery datasets have become increasingly popular means for exposing and disseminating information. Commonly, moving objects are of primary interest in modeling such datasets. Users may require different levels of detail mainly for visualization and further processing purposes according to the application at hand. In this thesis we exploit the geometric attributes of objects for dataset summarization by using a series of image processing and neural network tools. In order to form data summaries we select representative time instances through the segmentation of an object\u27s spatio-temporal trajectory lines. High movement variation instances are selected through a new hybrid self-organizing map (SOM) technique to describe a single spatio-temporal trajectory. Multiple objects move in diverse yet classifiable patterns. In order to group corresponding trajectories we utilize an abstraction mechanism that investigates a vague moving relevance between the data in space and time. Thus, we introduce the spatio-temporal neighborhood unit as a variable generalization surface. By altering the unit\u27s dimensions, scaled generalization is accomplished. Common complications in tracking applications that include occlusion, noise, information gaps and unconnected segments of data sequences are addressed through the hybrid-SOM analysis. Nevertheless, entangled data sequences where no information on which data entry belongs to each corresponding trajectory are frequently evident. A multidimensional classification technique that combines geometric and backpropagation neural network implementation is used to distinguish between trajectory data. Further more, modeling and summarization of two-dimensional phenomena evolving in time brings forward the novel concept of spatio-temporal helixes as compact event representations. The phenomena models are comprised of SOM movement nodes (spines) and cardinality shape-change descriptors (prongs). While we focus on the analysis of MI datasets, the framework can be generalized to function with other types of spatio-temporal datasets. Multiple scale generalization is allowed in a dynamic significance-based scale rather than a constant one. The constructed summaries are not just a visualization product but they support further processing for metadata creation, indexing, and querying. Experimentation, comparisons and error estimations for each technique support the analyses discussed
    corecore