5,370 research outputs found

    Enabling the human in the loop: Linked data and knowledge in industrial cyber-physical systems

    Get PDF
    Industrial Cyber-Physical Systems have benefitted substantially from the introduction of a range of technology enablers. These include web-based and semantic computing, ubiquitous sensing, internet of things (IoT) with multi-connectivity, advanced computing architectures and digital platforms, coupled with edge or cloud side data management and analytics, and have contributed to shaping up enhanced or new data value chains in manufacturing. While parts of such data flows are increasingly automated, there is now a greater demand for more effectively integrating, rather than eliminating, human cognitive capabilities in the loop of production related processes. Human integration in Cyber-Physical environments can already be digitally supported in various ways. However, incorporating human skills and tangible knowledge requires approaches and technological solutions that facilitate the engagement of personnel within technical systems in ways that take advantage or amplify their cognitive capabilities to achieve more effective sociotechnical systems. After analysing related research, this paper introduces a novel viewpoint for enabling human in the loop engagement linked to cognitive capabilities and highlighting the role of context information management in industrial systems. Furthermore, it presents examples of technology enablers for placing the human in the loop at selected application cases relevant to production environments. Such placement benefits from the joint management of linked maintenance data and knowledge, expands the power of machine learning for asset awareness with embedded event detection, and facilitates IoT-driven analytics for product lifecycle management

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    Digital Twins for Industry 4.0 in the 6G Era

    Full text link
    Having the Fifth Generation (5G) mobile communication system recently rolled out in many countries, the wireless community is now setting its eyes on the next era of Sixth Generation (6G). Inheriting from 5G its focus on industrial use cases, 6G is envisaged to become the infrastructural backbone of future intelligent industry. Especially, a combination of 6G and the emerging technologies of Digital Twins (DT) will give impetus to the next evolution of Industry 4.0 (I4.0) systems. This article provides a survey in the research area of 6G-empowered industrial DT system. With a novel vision of 6G industrial DT ecosystem, this survey discusses the ambitions and potential applications of industrial DT in the 6G era, identifying the emerging challenges as well as the key enabling technologies. The introduced ecosystem is supposed to bridge the gaps between humans, machines, and the data infrastructure, and therewith enable numerous novel application scenarios.Comment: Accepted for publication in IEEE Open Journal of Vehicular Technolog

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    The role of big data analytics in industrial internet of things

    Get PDF
    Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage resources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT. We identify and discuss the indispensable challenges that remain to be addressed, serving as future research directions. © 2019 Elsevier B.V

    The role of big data analytics in industrial Internet of Things

    Get PDF
    Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage resources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT.We identify and discuss the indispensable challenges that remain to be addressed as future research directions as well

    Utilizing industry 4.0 on the construction site : challenges and opportunities

    Get PDF
    In recent years a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organisations alike. This paper discusses the current state of the art in the adoption of industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of industry 4.0 technologies. This paper discusses the relevance of the following key industry 4.0 technologies to construction: data analytics and artificial intelligence; robotics and automation; buildings information management; sensors and wearables; digital twin and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This paper also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector; a three-phase use of intelligent assets from the point of manufacture up to after build and a four staged R&D process for the implementation of smart wearables in a digital enhanced construction site

    IDARTS – Towards intelligent data analysis and real-time supervision for industry 4.0

    Get PDF
    The manufacturing industry represents a data rich environment, in which larger and larger volumes of data are constantly being generated by its processes. However, only a relatively small portion of it is actually taken advantage of by manufacturers. As such, the proposed Intelligent Data Analysis and Real-Time Supervision (IDARTS) framework presents the guidelines for the implementation of scalable, flexible and pluggable data analysis and real-time supervision systems for manufacturing environments. IDARTS is aligned with the current Industry 4.0 trend, being aimed at allowing manufacturers to translate their data into a business advantage through the integration of a Cyber-Physical System at the edge with cloud computing. It combines distributed data acquisition, machine learning and run-time reasoning to assist in fields such as predictive maintenance and quality control, reducing the impact of disruptive events in production.info:eu-repo/semantics/publishedVersio
    • …
    corecore