3,123 research outputs found

    Semantics out of context: nominal absolute denotations for first-order logic and computation

    Full text link
    Call a semantics for a language with variables absolute when variables map to fixed entities in the denotation. That is, a semantics is absolute when the denotation of a variable a is a copy of itself in the denotation. We give a trio of lattice-based, sets-based, and algebraic absolute semantics to first-order logic. Possibly open predicates are directly interpreted as lattice elements / sets / algebra elements, subject to suitable interpretations of the connectives and quantifiers. In particular, universal quantification "forall a.phi" is interpreted using a new notion of "fresh-finite" limit and using a novel dual to substitution. The interest of this semantics is partly in the non-trivial and beautiful technical details, which also offer certain advantages over existing semantics---but also the fact that such semantics exist at all suggests a new way of looking at variables and the foundations of logic and computation, which may be well-suited to the demands of modern computer science

    The language of Stratified Sets is confluent and strongly normalising

    Get PDF
    We study the properties of the language of Stratified Sets (first-order logic with \in and a stratification condition) as used in TST, TZT, and (with stratifiability instead of stratification) in Quine's NF. We find that the syntax forms a nominal algebra for substitution and that stratification and stratifiability imply confluence and strong normalisation under rewrites corresponding naturally to β\beta-conversion.Comment: arXiv admin note: text overlap with arXiv:1406.406

    From nominal sets binding to functions and lambda-abstraction: connecting the logic of permutation models with the logic of functions

    Get PDF
    Permissive-Nominal Logic (PNL) extends first-order predicate logic with term-formers that can bind names in their arguments. It takes a semantics in (permissive-)nominal sets. In PNL, the forall-quantifier or lambda-binder are just term-formers satisfying axioms, and their denotation is functions on nominal atoms-abstraction. Then we have higher-order logic (HOL) and its models in ordinary (i.e. Zermelo-Fraenkel) sets; the denotation of forall or lambda is functions on full or partial function spaces. This raises the following question: how are these two models of binding connected? What translation is possible between PNL and HOL, and between nominal sets and functions? We exhibit a translation of PNL into HOL, and from models of PNL to certain models of HOL. It is natural, but also partial: we translate a restricted subsystem of full PNL to HOL. The extra part which does not translate is the symmetry properties of nominal sets with respect to permutations. To use a little nominal jargon: we can translate names and binding, but not their nominal equivariance properties. This seems reasonable since HOL---and ordinary sets---are not equivariant. Thus viewed through this translation, PNL and HOL and their models do different things, but they enjoy non-trivial and rich subsystems which are isomorphic

    Nominal Unification from a Higher-Order Perspective

    Full text link
    Nominal Logic is a version of first-order logic with equality, name-binding, renaming via name-swapping and freshness of names. Contrarily to higher-order logic, bindable names, called atoms, and instantiable variables are considered as distinct entities. Moreover, atoms are capturable by instantiations, breaking a fundamental principle of lambda-calculus. Despite these differences, nominal unification can be seen from a higher-order perspective. From this view, we show that nominal unification can be reduced to a particular fragment of higher-order unification problems: Higher-Order Pattern Unification. This reduction proves that nominal unification can be decided in quadratic deterministic time, using the linear algorithm for Higher-Order Pattern Unification. We also prove that the translation preserves most generality of unifiers

    Logical calculi for reasoning with binding

    Get PDF
    In informal mathematical usage we often reason about languages involving binding of object-variables. We find ourselves writing assertions involving meta-variables and capture-avoidance constraints on where object-variables can and cannot occur free. Formalising such assertions is problematic because the standard logical frameworks cannot express capture-avoidance constraints directly. In this thesis we make the case for extending logical frameworks with metavariables and capture-avoidance constraints. We use nominal techniques that allow for a direct formalisation of meta-level assertions, while remaining close to informal practice. Our focus is on derivability and we show that our derivation rules support the following key features of meta-level reasoning: • instantiation of meta-variables, by means of capturing substitution of terms for meta-variables; • ??-renaming of object-variables and capture-avoiding substitution of terms for object-variables in the presence of meta-variables; • generation of fresh object-variables inside a derivation. We apply our nominal techniques to the following two logical frameworks: • Equational logic. We investigate proof-theoretical properties, give a semantics in nominal sets and compare the notion of ??-renaming to existing notions of ??-equivalence with meta-variables. We also provide an axiomatisation of capture-avoiding substitution, and show that it is sound and complete with respect to the usual notion of capture-avoiding substitution. • First-order logic with equality. We provide a sequent calculus with metavariables and capture-avoidance constraints, and show that it represents schemas of derivations in first-order logic. We also show how we can axiomatise this notion of derivability in the calculus for equational logic

    Representation and duality of the untyped lambda-calculus in nominal lattice and topological semantics, with a proof of topological completeness

    Get PDF
    We give a semantics for the lambda-calculus based on a topological duality theorem in nominal sets. A novel interpretation of lambda is given in terms of adjoints, and lambda-terms are interpreted absolutely as sets (no valuation is necessary)

    From nominal to higher-order rewriting and back again

    Full text link
    We present a translation function from nominal rewriting systems (NRSs) to combinatory reduction systems (CRSs), transforming closed nominal rules and ground nominal terms to CRSs rules and terms, respectively, while preserving the rewriting relation. We also provide a reduction-preserving translation in the other direction, from CRSs to NRSs, improving over a previously defined translation. These tools, together with existing translations between CRSs and other higher-order rewriting formalisms, open up the path for a transfer of results between higher-order and nominal rewriting. In particular, techniques and properties of the rewriting relation, such as termination, can be exported from one formalism to the other.Comment: 41 pages, journa

    Nominal Equational Logic

    Get PDF
    AbstractThis paper studies the notion of “freshness” that often occurs in the meta-theory of computer science languages involving various kinds of names. Nominal Equational Logic is an extension of ordinary equational logic with assertions about the freshness of names. It is shown to be both sound and complete for the support interpretation of freshness and equality provided by the Gabbay-Pitts nominal sets model of names, binding and α-conversion

    Dependent Types for Nominal Terms with Atom Substitutions

    Get PDF
    Nominal terms are an extended first-order language for specifying and verifying properties of syntax with binding. Founded upon the semantics of nominal sets, the success of nominal terms with regard to systems of equational reasoning is already well established. This work first extends the untyped language of nominal terms with a notion of non-capturing atom substitution for object-level names and then proposes a dependent type system for this extended language. Both these contributions are intended to serve as a prelude to a future nominal logical framework based upon nominal equational reasoning and thus an extended example is given to demonstrate that this system is capable of encoding various other formal systems of interest
    corecore