20,288 research outputs found

    Rendering techniques for multimodal data

    Get PDF
    Many different direct volume rendering methods have been developed to visualize 3D scalar fields on uniform rectilinear grids. However, little work has been done on rendering simultaneously various properties of the same 3D region measured with different registration devices or at different instants of time. The demand for this type of visualization is rapidly increasing in scientific applications such as medicine in which the visual integration of multiple modalities allows a better comprehension of the anatomy and a perception of its relationships with activity. This paper presents different strategies of Direct Multimodal Volume Rendering (DMVR). It is restricted to voxel models with a known 3D rigid alignment transformation. The paper evaluates at which steps of the render-ing pipeline must the data fusion be realized in order to accomplish the desired visual integration and to provide fast re-renders when some fusion parameters are modified. In addition, it analyzes how existing monomodal visualization al-gorithms can be extended to multiple datasets and it compares their efficiency and their computational cost.Postprint (published version

    From Stereogram to Surface: How the Brain Sees the World in Depth

    Full text link
    When we look at a scene, how do we consciously see surfaces infused with lightness and color at the correct depths? Random Dot Stereograms (RDS) probe how binocular disparity between the two eyes can generate such conscious surface percepts. Dense RDS do so despite the fact that they include multiple false binocular matches. Sparse stereograms do so even across large contrast-free regions with no binocular matches. Stereograms that define occluding and occluded surfaces lead to surface percepts wherein partially occluded textured surfaces are completed behind occluding textured surfaces at a spatial scale much larger than that of the texture elements themselves. Earlier models suggest how the brain detects binocular disparity, but not how RDS generate conscious percepts of 3D surfaces. A neural model predicts how the layered circuits of visual cortex generate these 3D surface percepts using interactions between visual boundary and surface representations that obey complementary computational rules.Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (EIA-01-30851, SBE-0354378); Office of Naval Research (N00014-01-1-0624

    3D Object Reconstruction from Hand-Object Interactions

    Full text link
    Recent advances have enabled 3d object reconstruction approaches using a single off-the-shelf RGB-D camera. Although these approaches are successful for a wide range of object classes, they rely on stable and distinctive geometric or texture features. Many objects like mechanical parts, toys, household or decorative articles, however, are textureless and characterized by minimalistic shapes that are simple and symmetric. Existing in-hand scanning systems and 3d reconstruction techniques fail for such symmetric objects in the absence of highly distinctive features. In this work, we show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of even featureless and highly symmetric objects and we present an approach that fuses the rich additional information of hands into a 3d reconstruction pipeline, significantly contributing to the state-of-the-art of in-hand scanning.Comment: International Conference on Computer Vision (ICCV) 2015, http://files.is.tue.mpg.de/dtzionas/In-Hand-Scannin

    Improved depth recovery in consumer depth cameras via disparity space fusion within cross-spectral stereo.

    Get PDF
    We address the issue of improving depth coverage in consumer depth cameras based on the combined use of cross-spectral stereo and near infra-red structured light sensing. Specifically we show that fusion of disparity over these modalities, within the disparity space image, prior to disparity optimization facilitates the recovery of scene depth information in regions where structured light sensing fails. We show that this joint approach, leveraging disparity information from both structured light and cross-spectral sensing, facilitates the joint recovery of global scene depth comprising both texture-less object depth, where conventional stereo otherwise fails, and highly reflective object depth, where structured light (and similar) active sensing commonly fails. The proposed solution is illustrated using dense gradient feature matching and shown to outperform prior approaches that use late-stage fused cross-spectral stereo depth as a facet of improved sensing for consumer depth cameras
    • …
    corecore