7,163 research outputs found

    Latin American perspectives to internationalize undergraduate information technology education

    Get PDF
    The computing education community expects modern curricular guidelines for information technology (IT) undergraduate degree programs by 2017. The authors of this work focus on eliciting and analyzing Latin American academic and industry perspectives on IT undergraduate education. The objective is to ensure that the IT curricular framework in the IT2017 report articulates the relationship between academic preparation and the work environment of IT graduates in light of current technological and educational trends in Latin America and elsewhere. Activities focus on soliciting and analyzing survey data collected from institutions and consortia in IT education and IT professional and educational societies in Latin America; these activities also include garnering the expertise of the authors. Findings show that IT degree programs are making progress in bridging the academic-industry gap, but more work remains

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Software Engineering Education Needs More Engineering

    Get PDF
    To what extent is “software engineering” really “engineering” as this term is commonly understood? A hallmark of the products of the traditional engineering disciplines is trustworthiness based on dependability. But in his keynote presentation at ICSE 2006 Barry Boehm pointed out that individuals’, systems’, and peoples’ dependency on software is becoming increasingly critical, yet that dependability is generally not the top priority for software intensive system producers. Continuing in an uncharacteristic pessimistic vein, Professor Boehm said that this situation will likely continue until a major software-induced system catastrophe similar in impact to the 9/11 World Trade Center catastrophe stimulates action toward establishing accountability for software dependability. He predicts that it is highly likely that such a software-induced catastrophe will occur between now and 2025. It is widely understood that software, i.e., computer programs, are intrinsically different from traditionally engineered products, but in one aspect they are identical: the extent to which the well-being of individuals, organizations, and society in general increasingly depend on software. As wardens of the future through our mentoring of the next generation of software developers, we believe that it is our responsibility to at least address Professor Boehm’s predicted catastrophe. Traditional engineering has, and continually addresses its social responsibility through the evolution of the education, practice, and professional certification/licensing of professional engineers. To be included in the fraternity of professional engineers, software engineering must do the same. To get a rough idea of where software engineering currently stands on some of these issues we conducted two surveys. Our main survey was sent to software engineering academics in the U.S., Canada, and Australia. Among other items it sought detail information on their software engineering programs. Our auxiliary survey was sent to U.S. engineering institutions to get some idea about how software engineering programs compared with those in established engineering disciplines of Civil, Electrical, and Mechanical Engineering. Summaries of our findings can be found in the last two sections of our paper

    A systematic literature review of capstone courses in software engineering

    Get PDF
    Context: Tertiary education institutions aim to prepare their computer science and software engineering students for working life. While much of the technical principles are covered in lower-level courses, team-based capstone courses are a common way to provide students with hands-on experience and teach soft skills. Objective: This paper explores the characteristics of project-based software engineering capstone courses presented in the literature. The goal of this work is to understand the pros and cons of different approaches by synthesising the various aspects of software engineering capstone courses and related experiences. Method: In a systematic literature review for 2007–2022, we identified 127 articles describing real-world capstone courses. These articles were analysed based on their presented course characteristics and the reported course outcomes. Results: The characteristics were synthesised into a taxonomy consisting of duration, team sizes, client and project sources, project implementation, and student assessment. We found out that capstone courses generally last one semester and divide students into groups of 4–5 where they work on a project for a client. For a slight majority of courses, the clients are external to the course staff and students are often expected to produce a proof-of-concept level software product as the main end deliverable. The courses generally include various forms of student assessment both during and at the end of the course. Conclusions: This paper provides researchers and educators with a classification of characteristics of software engineering capstone courses based on previous research. We also further synthesise insights on the reported course outcomes. Our review study aims to help educators to identify various ways of organising capstones and effectively plan and deliver their own capstone courses. The characterisation also helps researchers to conduct further studies on software engineering capstones.Context: Tertiary education institutions aim to prepare their computer science and software engineering students for working life. While much of the technical principles are covered in lower-level courses, team-based capstone courses are a common way to provide students with hands-on experience and teach soft skills. Objective: This paper explores the characteristics of project-based software engineering capstone courses presented in the literature. The goal of this work is to understand the pros and cons of different approaches by synthesising the various aspects of software engineering capstone courses and related experiences. Method: In a systematic literature review for 2007–2022, we identified 127 articles describing real-world capstone courses. These articles were analysed based on their presented course characteristics and the reported course outcomes. Results: The characteristics were synthesised into a taxonomy consisting of duration, team sizes, client and project sources, project implementation, and student assessment. We found out that capstone courses generally last one semester and divide students into groups of 4–5 where they work on a project for a client. For a slight majority of courses, the clients are external to the course staff and students are often expected to produce a proof-of-concept level software product as the main end deliverable. The courses generally include various forms of student assessment both during and at the end of the course. Conclusions: This paper provides researchers and educators with a classification of characteristics of software engineering capstone courses based on previous research. We also further synthesise insights on the reported course outcomes. Our review study aims to help educators to identify various ways of organising capstones and effectively plan and deliver their own capstone courses. The characterisation also helps researchers to conduct further studies on software engineering capstones.Peer reviewe

    Understanding requirements engineering process: a challenge for practice and education

    Get PDF
    Reviews of the state of the professional practice in Requirements Engineering (RE) stress that the RE process is both complex and hard to describe, and suggest there is a significant difference between competent and "approved" practice. "Approved" practice is reflected by (in all likelihood, in fact, has its genesis in) RE education, so that the knowledge and skills taught to students do not match the knowledge and skills required and applied by competent practitioners. A new understanding of the RE process has emerged from our recent study. RE is revealed as inherently creative, involving cycles of building and major reconstruction of the models developed, significantly different from the systematic and smoothly incremental process generally described in the literature. The process is better characterised as highly creative, opportunistic and insight driven. This mismatch between approved and actual practice provides a challenge to RE education - RE requires insight and creativity as well as technical knowledge. Traditional learning models applied to RE focus, however, on notation and prescribed processes acquired through repetition. We argue that traditional learning models fail to support the learning required for RE and propose both a new model based on cognitive flexibility and a framework for RE education to support this model

    Contemporary Capstone Computer Courses: Lessons From The Service Sciences

    Get PDF
    Enrollment in computer programming courses has plummeted in the past decade.  Facing a similar situation in the 1960s, the mathematics community responded by inventing the “new math.”  Unfortunately the new math failed because it was too abstract for students to see connections with their lives, and because math teachers were not adequately prepared.  Many of today’s computing related degree programs are in danger of failing for similar reasons. This paper argues that, besides off-shoring; there may be other less obvious reasons for the drop in enrollment.  These reasons include curriculums that overemphasize functional programming, and under-emphasize ethics and practical service internships.  This paper further argues that modern curriculums for the fields of Computer Science, Information Systems, Information Technology, and Software Engineering could all be improved by viewing them as sub-specialties of the newly emerging discipline of Service Sciences.  The paper concludes by sketching a basic curriculum for a hypothetical new program we call the School of Artificial Systems and Service Sciences.  It is an extension of the philosophical approach used at Yale Medical School

    Involving External Stakeholders in Project Courses

    Full text link
    Problem: The involvement of external stakeholders in capstone projects and project courses is desirable due to its potential positive effects on the students. Capstone projects particularly profit from the inclusion of an industrial partner to make the project relevant and help students acquire professional skills. In addition, an increasing push towards education that is aligned with industry and incorporates industrial partners can be observed. However, the involvement of external stakeholders in teaching moments can create friction and could, in the worst case, lead to frustration of all involved parties. Contribution: We developed a model that allows analysing the involvement of external stakeholders in university courses both in a retrospective fashion, to gain insights from past course instances, and in a constructive fashion, to plan the involvement of external stakeholders. Key Concepts: The conceptual model and the accompanying guideline guide the teachers in their analysis of stakeholder involvement. The model is comprised of several activities (define, execute, and evaluate the collaboration). The guideline provides questions that the teachers should answer for each of these activities. In the constructive use, the model allows teachers to define an action plan based on an analysis of potential stakeholders and the pedagogical objectives. In the retrospective use, the model allows teachers to identify issues that appeared during the project and their underlying causes. Drawing from ideas of the reflective practitioner, the model contains an emphasis on reflection and interpretation of the observations made by the teacher and other groups involved in the courses. Key Lessons: Applying the model retrospectively to a total of eight courses shows that it is possible to reveal hitherto implicit risks and assumptions and to gain a better insight into the interaction...Comment: Abstract shortened since arxiv.org limits length of abstracts. See paper/pdf for full abstract. Paper is forthcoming, accepted August 2017. Arxiv version 2 corrects misspelled author nam

    The Master’s Program in Information Systems: A Survey of Core Curricula in AACSB-Accredited Business Schools in the United States

    Get PDF
    This paper investigates the core curricula of Information Systems (IS) master’s programs. It examines all 532 AACSB-accredited business schools in the United States and identifies 74 IS master’s programs. MSIS 2016 and other curricular models and studies are used in a research framework to survey core courses. The top three required courses are Data, Information, and Content Management, Systems Development and Deployment, and Project and Change Management. One unexpected result is that Business Intelligence/Analytics/Data Mining is now the fourth most popular core course, while Business Continuity and Information Assurance is the fifth. The results are compared to those of a 2012 study to examine IS master curricula’ change over the last decade. Based on actual data on core courses being offered, a new IS master’s curriculum model is developed

    Empowering Female College Students in Pursuing Careers in Science, Technology, Engineering and Mathematics (STEM)

    Get PDF
    As the STEM field continues to grow, it is evident that there is a need to close the gender gap between males and females. This senior capstone examines the evolution of the acronym STEM and how programs have attempted to narrow the gender gap, but it is not easy to completely close the gap. Through a literature review and surveys with educators at the high school and university levels, this research project looks at the factors that have empowered female students to pursue careers in STEM. The findings provide insight into what has led female college students to pursue careers in STEM
    • …
    corecore