208 research outputs found

    The network structure of visited locations according to geotagged social media photos

    Full text link
    Businesses, tourism attractions, public transportation hubs and other points of interest are not isolated but part of a collaborative system. Making such collaborative network surface is not always an easy task. The existence of data-rich environments can assist in the reconstruction of collaborative networks. They shed light into how their members operate and reveal a potential for value creation via collaborative approaches. Social media data are an example of a means to accomplish this task. In this paper, we reconstruct a network of tourist locations using fine-grained data from Flickr, an online community for photo sharing. We have used a publicly available set of Flickr data provided by Yahoo! Labs. To analyse the complex structure of tourism systems, we have reconstructed a network of visited locations in Europe, resulting in around 180,000 vertices and over 32 million edges. An analysis of the resulting network properties reveals its complex structure.Comment: 8 pages, 3 figure

    A Novel Fuzzy c -Means Clustering Algorithm Using Adaptive Norm

    Get PDF
    Abstract(#br)The fuzzy c -means (FCM) clustering algorithm is an unsupervised learning method that has been widely applied to cluster unlabeled data automatically instead of artificially, but is sensitive to noisy observations due to its inappropriate treatment of noise in the data. In this paper, a novel method considering noise intelligently based on the existing FCM approach, called adaptive-FCM and its extended version (adaptive-REFCM) in combination with relative entropy, are proposed. Adaptive-FCM, relying on an inventive integration of the adaptive norm, benefits from a robust overall structure. Adaptive-REFCM further integrates the properties of the relative entropy and normalized distance to preserve the global details of the dataset. Several experiments are carried out,..

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov
    corecore