80 research outputs found

    Hybrid Device-to-Device and Device-to-Vehicle Networks for Energy-Efficient Emergency Communications

    Full text link
    Recovering postdisaster communications has become a major challenge for search and rescue. Device-to-device (D2D) and device-to-vehicle (D2V) networks have drawn attention. However, due to the limited D2D coverage and onboard energy, establishing a hybrid D2D and D2V network is promising. In this article, we jointly establish, optimize, and fuse D2D and D2V networks to support energy-efficient emergency communications. First, we establish a D2D network by optimally dividing ground devices (GDs) into multiple clusters and identifying temporary data caching centers (TDCCs) from GDs in clusters. Accordingly, emergency data returned from GDs is cached in TDCCs. Second, given the distribution of TDCCs, unmanned aerial vehicles (UAVs) are dispatched to fetch data from TDCCs. Therefore, we establish a UAV-assisted D2V network through path planning and network configuration optimization. Specifically, optimal path planning is implemented using cascaded waypoint and motion planning and optimal network configurations are determined by multiobjective optimization. Consequently, the best tradeoff between emergency response time and energy consumption is achieved, subject to a given set of constraints on signal-to-interference-plus-noise ratios, the number of UAVs, transmit power, and energy. Simulation results show that our proposed approach outperforms benchmark schemes in terms of energy efficiency, contributing to large-scale postdisaster emergency response.Comment: 12 page

    Advanced Technologies for Device-to-device Communications Underlaying Cellular Networks

    Get PDF
    The past few years have seen a major change in cellular networks, as explosive growth in data demands requires more and more network capacity and backhaul capability. New wireless technologies have been proposed to tackle these challenges. One of the emerging technologies is device-to-device (D2D) communications. It enables two cellular user equip- ment (UEs) in proximity to communicate with each other directly reusing cellular radio resources. In this case, D2D is able to of oad data traf c from central base stations (BSs) and signi cantly improve the spectrum ef ciency of a cellular network, and thus is one of the key technologies for the next generation cellular systems. Radio resource management (RRM) for D2D communications and how to effectively exploit the potential bene ts of D2D are two paramount challenges to D2D communications underlaying cellular networks. In this thesis, we focus on four problems related to these two challenges. In Chapter 2, we utilise the mixed integer non-linear programming (MINLP) to model and solve the RRM optimisation problems for D2D communications. Firstly we consider the RRM optimisation problem for D2D communications underlaying the single carrier frequency division multiple access (SC-FDMA) system and devise a heuristic sub- optimal solution to it. Then we propose an optimised RRM mechanism for multi-hop D2D communications with network coding (NC). NC has been proven as an ef cient technique to improve the throughput of ad-hoc networks and thus we apply it to multi-hop D2D communications. We devise an optimal solution to the RRM optimisation problem for multi-hop D2D communications with NC. In Chapter 3, we investigate how the location of the D2D transmitter in a cell may affect the RRM mechanism and the performance of D2D communications. We propose two optimised location-based RRM mechanisms for D2D, which maximise the throughput and the energy ef ciency of D2D, respectively. We show that, by considering the location information of the D2D transmitter, the MINLP problem of RRM for D2D communications can be transformed into a convex optimisation problem, which can be ef ciently solved by the method of Lagrangian multipliers. In Chapter 4, we propose a D2D-based P2P le sharing system, which is called Iunius. The Iunius system features: 1) a wireless P2P protocol based on Bittorrent protocol in the application layer; 2) a simple centralised routing mechanism for multi-hop D2D communications; 3) an interference cancellation technique for conventional cellular (CC) uplink communications; and 4) a radio resource management scheme to mitigate the interference between CC and D2D communications that share the cellular uplink radio resources while maximising the throughput of D2D communications. We show that with the properly designed application layer protocol and the optimised RRM for D2D communications, Iunius can signi cantly improve the quality of experience (QoE) of users and of oad local traf c from the base station. In Chapter 5, we combine LTE-unlicensed with D2D communications. We utilise LTE-unlicensed to enable the operation of D2D in unlicensed bands. We show that not only can this improve the throughput of D2D communications, but also allow D2D to work in the cell central area, which normally regarded as a “forbidden area” for D2D in existing works. We achieve these results mainly through numerical optimisation and simulations. We utilise a wide range of numerical optimisation theories in our works. Instead of utilising the general numerical optimisation algorithms to solve the optimisation problems, we modify them to be suitable for the speci c problems, thereby reducing the computational complexity. Finally, we evaluate our proposed algorithms and systems through sophisticated numer- ical simulations. We have developed a complete system-level simulation framework for D2D communications and we open-source it in Github: https://github.com/mathwuyue/py- wireless-sys-sim

    Device-to-device communication in cellular networks : multi-hop path selection and performance.

    Get PDF
    Over the past decade, the proliferation of internet equipment and an increasing number of people moving into cities have significantly influenced mobile data demand density and intensity. To accommodate the increasing demands, the fifth generation (5G) wireless systems standards emerged in 2014. Device-to-device communications (D2D) is one of the three primary technologies to address the key performance indicators of the 5G network. D2D communications enable devices to communicate data information directly with each other without access to a fixed wireless infrastructure. The potential advantages of D2D communications include throughput enhancement, device energy saving and coverage expansion. The economic attraction to mobile operators is that significant capacity and coverage gains can be achieved without having to invest in network-side hardware upgrades or new cell deployments. However, there are technical challenges related to D2D and conventional cellular communication (CC) in co-existence, especially their mutual interference due to spectrum sharing. A novel interference-aware-routing for multi-hop D2D is introduced for reducing the mutual interference. The first verification scenario of interference-aware-routing is that in a real urban environment. D2D is used for relaying data across the urban terrain, in the presence of CC communications. Different wireless routing algorithms are considered, namely: shortest-path-routing, interference-aware-routing, and broadcast-routing. In general, the interference-aware-routing achieves a better performance of reliability and there is a fundamental trade-off between D2D and CC outage performances, due to their mutual interference relationship. Then an analytical stochastic geometry framework is developed to compare the performance of shortest-path-routing and interference-aware-routing. Based on the results, the spatial operational envelopes for different D2D routing algorithms and CC transmissions based on the user equipment (UEs) physical locations are defined. There is a forbidden area of D2D because of the interference from the base stations (BSs), so the collision probability of the D2D multi-hop path hitting the defined D2D forbidden area is analysed. Depend on the result of the collision probability, a dynamic switching strategy between D2D and CC communications in order to minimise mutual interference is proposed. A blind gradient-based transmission switching strategy is developed to avoid collision within the collision area and only requires knowledge of the distances to the serving base station of the current user and the final destination user. In the final part of my research, the concept of LTE-U (Long term evolution for Unlicensed Spectrum), which suggests that LTE can operate in the unlicensed spectrum with significant modifications to its transmission protocols, is investigated. How the envisaged D2D networks can efficiently scale their capacity by utilising the unlicensed spectrum with appropriately designed LTE-Unlicensed protocols is examined

    Connectivity and Mobility in Wireless Networks

    Get PDF

    Cross-Layer Energy Optimization for IoT Environments: Technical Advances and Opportunities

    Get PDF
    [EN] Energy efficiency is a significant characteristic of battery-run devices such as sensors, RFID and mobile phones. In the present scenario, this is the most prominent requirement that must be served while introducing a communication protocol for an IoT environment. IoT network success and performance enhancement depend heavily on optimization of energy consumption that enhance the lifetime of IoT nodes and the network. In this context, this paper presents a comprehensive review on energy efficiency techniques used in IoT environments. The techniques proposed by researchers have been categorized based on five different layers of the energy architecture of IoT. These five layers are named as sensing, local processing and storage, network/communication, cloud processing and storage, and application. Specifically, the significance of energy efficiency in IoT environments is highlighted. A taxonomy is presented for the classification of related literature on energy efficient techniques in IoT environments. Following the taxonomy, a critical review of literature is performed focusing on major functional models, strengths and weaknesses. Open research challenges related to energy efficiency in IoT are identified as future research directions in the area. The survey should benefit IoT industry practitioners and researchers, in terms of augmenting the understanding of energy efficiency and its IoT-related trends and issues.Kumar, K.; Kumar, S.; Kaiwartya, O.; Cao, Y.; Lloret, J.; Aslam, N. (2017). Cross-Layer Energy Optimization for IoT Environments: Technical Advances and Opportunities. Energies. 10(12):1-40. https://doi.org/10.3390/en10122073S1401012Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, 1(1), 22-32. doi:10.1109/jiot.2014.2306328Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., M. Leung, V. C., & Guan, Y. L. (2015). Wireless energy harvesting for the Internet of Things. IEEE Communications Magazine, 53(6), 102-108. doi:10.1109/mcom.2015.7120024Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., & Liu, X. (2016). Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects. IEEE Access, 4, 5356-5373. doi:10.1109/access.2016.2603219Grieco, L. A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Di Paola, D., & Boggia, G. (2014). IoT-aided robotics applications: Technological implications, target domains and open issues. Computer Communications, 54, 32-47. doi:10.1016/j.comcom.2014.07.013Aijaz, A., & Aghvami, A. H. (2015). Cognitive Machine-to-Machine Communications for Internet-of-Things: A Protocol Stack Perspective. IEEE Internet of Things Journal, 2(2), 103-112. doi:10.1109/jiot.2015.2390775Lin, Y.-B., Lin, Y.-W., Chih, C.-Y., Li, T.-Y., Tai, C.-C., Wang, Y.-C., … Hsu, S.-C. (2015). EasyConnect: A Management System for IoT Devices and Its Applications for Interactive Design and Art. IEEE Internet of Things Journal, 2(6), 551-561. doi:10.1109/jiot.2015.2423286Bello, O., & Zeadally, S. (2016). Intelligent Device-to-Device Communication in the Internet of Things. IEEE Systems Journal, 10(3), 1172-1182. doi:10.1109/jsyst.2014.2298837Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. doi:10.1016/j.comnet.2010.05.010Kaur, N., & Sood, S. K. (2017). An Energy-Efficient Architecture for the Internet of Things (IoT). IEEE Systems Journal, 11(2), 796-805. doi:10.1109/jsyst.2015.2469676Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues. IEEE Communications Surveys & Tutorials, 17(1), 179-197. doi:10.1109/comst.2014.2341600Machine-to-Machine Communications (M2M). M2M Service Requirementshttp://www.etsi.org/deliver/etsi_ts/102600_102699/102689/01.01.01_60/ts_102689v010101p.pdfKhan, M., Silva, B. N., & Han, K. (2016). Internet of Things Based Energy Aware Smart Home Control System. IEEE Access, 4, 7556-7566. doi:10.1109/access.2016.2621752Huang, S.-C., Chen, B.-H., Chou, S.-K., Hwang, J.-N., & Lee, K.-H. (2016). Smart Car [Application Notes]. IEEE Computational Intelligence Magazine, 11(4), 46-58. doi:10.1109/mci.2016.2601758Kant, K., & Pal, A. (2017). Internet of Perishable Logistics. IEEE Internet Computing, 21(1), 22-31. doi:10.1109/mic.2017.19Roopaei, M., Rad, P., & Choo, K.-K. R. (2017). Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Computing, 4(1), 10-15. doi:10.1109/mcc.2017.5Tröster, G. (2011). Smart Clothes—The Unfulfilled Pledge? IEEE Pervasive Computing, 10(2), 87-89. doi:10.1109/mprv.2011.32Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376. doi:10.1109/comst.2015.2444095Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal, 4(5), 1125-1142. doi:10.1109/jiot.2017.2683200Perera, C., Liu, C. H., Jayawardena, S., & Min Chen. (2014). A Survey on Internet of Things From Industrial Market Perspective. IEEE Access, 2, 1660-1679. doi:10.1109/access.2015.2389854Kamilaris, A., & Pitsillides, A. (2016). Mobile Phone Computing and the Internet of Things: A Survey. IEEE Internet of Things Journal, 3(6), 885-898. doi:10.1109/jiot.2016.2600569Arcadius Tokognon, C., Gao, B., Tian, G. Y., & Yan, Y. (2017). Structural Health Monitoring Framework Based on Internet of Things: A Survey. IEEE Internet of Things Journal, 4(3), 619-635. doi:10.1109/jiot.2017.2664072Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for Internet of Things: A Survey. IEEE Internet of Things Journal, 3(1), 70-95. doi:10.1109/jiot.2015.2498900Luong, N. C., Hoang, D. T., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2016). Data Collection and Wireless Communication in Internet of Things (IoT) Using Economic Analysis and Pricing Models: A Survey. IEEE Communications Surveys & Tutorials, 18(4), 2546-2590. doi:10.1109/comst.2016.2582841Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context Aware Computing for The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials, 16(1), 414-454. doi:10.1109/surv.2013.042313.00197Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-Radio-Based Internet of Things: Applications, Architectures, Spectrum Related Functionalities, and Future Research Directions. IEEE Wireless Communications, 24(3), 17-25. doi:10.1109/mwc.2017.1600404Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, M. (2016). Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23(5), 10-16. doi:10.1109/mwc.2016.7721736Cao, Y., Jiang, T., & Han, Z. (2016). A Survey of Emerging M2M Systems: Context, Task, and Objective. IEEE Internet of Things Journal, 3(6), 1246-1258. doi:10.1109/jiot.2016.2582540Rajandekar, A., & Sikdar, B. (2015). A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet of Things Journal, 2(2), 175-186. doi:10.1109/jiot.2015.2394438Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. doi:10.1016/j.future.2015.09.021Risteska Stojkoska, B. L., & Trivodaliev, K. V. (2017). A review of Internet of Things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454-1464. doi:10.1016/j.jclepro.2016.10.006Liu, C. H., Fan, J., Branch, J. W., & Leung, K. K. (2014). Toward QoI and Energy-Efficiency in Internet-of-Things Sensory Environments. IEEE Transactions on Emerging Topics in Computing, 2(4), 473-487. doi:10.1109/tetc.2014.2364915Du, R., Gkatzikis, L., Fischione, C., & Xiao, M. (2015). Energy Efficient Sensor Activation for Water Distribution Networks Based on Compressive Sensing. IEEE Journal on Selected Areas in Communications, 33(12), 2997-3010. doi:10.1109/jsac.2015.2481199Chen, Y., Chiotellis, N., Chuo, L.-X., Pfeiffer, C., Shi, Y., Dreslinski, R. G., … Kim, H. S. (2016). Energy-Autonomous Wireless Communication for Millimeter-Scale Internet-of-Things Sensor Nodes. IEEE Journal on Selected Areas in Communications, 34(12), 3962-3977. doi:10.1109/jsac.2016.2612041Akgül, Ö. U., & Canberk, B. (2016). Self-Organized Things (SoT): An energy efficient next generation network management. Computer Communications, 74, 52-62. doi:10.1016/j.comcom.2014.07.004Ahn, J. H., & Lee, T.-J. (2018). ALLYS: All You can Send for Energy Harvesting Networks. IEEE Transactions on Mobile Computing, 17(4), 775-788. doi:10.1109/tmc.2017.2740929Mondal, S., & Paily, R. (2017). Efficient Solar Power Management System for Self-Powered IoT Node. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9), 2359-2369. doi:10.1109/tcsi.2017.2707566Qureshi, F. F., Iqbal, R., & Asghar, M. N. (2017). Energy efficient wireless communication technique based on Cognitive Radio for Internet of Things. Journal of Network and Computer Applications, 89, 14-25. doi:10.1016/j.jnca.2017.01.003Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2017). Energy harvested roadside IEEE 802.15.4 wireless sensor networks for IoT applications. Ad Hoc Networks, 56, 109-121. doi:10.1016/j.adhoc.2016.12.003Khanouche, M. E., Amirat, Y., Chibani, A., Kerkar, M., & Yachir, A. (2016). Energy-Centered and QoS-Aware Services Selection for Internet of Things. IEEE Transactions on Automation Science and Engineering, 13(3), 1256-1269. doi:10.1109/tase.2016.2539240Afzal, B., Alvi, S. A., Shah, G. A., & Mahmood, W. (2017). Energy efficient context aware traffic scheduling for IoT applications. Ad Hoc Networks, 62, 101-115. doi:10.1016/j.adhoc.2017.05.001Song, L., Chai, K. K., Chen, Y., Schormans, J., Loo, J., & Vinel, A. (2017). QoS-Aware Energy-Efficient Cooperative Scheme for Cluster-Based IoT Systems. IEEE Systems Journal, 11(3), 1447-1455. doi:10.1109/jsyst.2015.2465292Energy-Efficient Probabilistic Routing Algorithm for Internet of Thingshttp://www.ietf.org/rfc/rfc3561.txtMachado, K., Rosário, D., Cerqueira, E., Loureiro, A., Neto, A., & de Souza, J. (2013). A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications. Sensors, 13(2), 1942-1964. doi:10.3390/s130201942Chelloug, S. A. (2015). Energy-Efficient Content-Based Routing in Internet of Things. Journal of Computer and Communications, 03(12), 9-20. doi:10.4236/jcc.2015.312002Zhao, M., Ho, I. W.-H., & Chong, P. H. J. (2016). An Energy-Efficient Region-Based RPL Routing Protocol for Low-Power and Lossy Networks. IEEE Internet of Things Journal, 3(6), 1319-1333. doi:10.1109/jiot.2016.2593438Qiu, T., Lv, Y., Xia, F., Chen, N., Wan, J., & Tolba, A. (2016). ERGID: An efficient routing protocol for emergency response Internet of Things. Journal of Network and Computer Applications, 72, 104-112. doi:10.1016/j.jnca.2016.06.009Liu, Y., Liu, A., Hu, Y., Li, Z., Choi, Y.-J., Sekiya, H., & Li, J. (2016). FFSC: An Energy Efficiency Communications Ap-proach for Delay Minimizing in Internet of Things. IEEE Access, 1-1. doi:10.1109/access.2016.2588278Qiu, S., Haselmayr, W., Li, B., Zhao, C., & Guo, W. (2017). Bacterial Relay for Energy-Efficient Molecular Communications. IEEE Transactions on NanoBioscience, 16(7), 555-562. doi:10.1109/tnb.2017.2741669Biason, A., Pielli, C., Rossi, M., Zanella, A., Zordan, D., Kelly, M., & Zorzi, M. (2017). EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design. IEEE Access, 5, 6894-6908. doi:10.1109/access.2017.2692522Huang, Z., Lin, K.-J., Yu, S.-Y., & Hsu, J. Y. (2014). Co-locating services in IoT systems to minimize the communication energy cost. Journal of Innovation in Digital Ecosystems, 1(1-2), 47-57. doi:10.1016/j.jides.2015.02.005Kwak, J., Kim, Y., Lee, J., & Chong, S. (2015). DREAM: Dynamic Resource and Task Allocation for Energy Minimization in Mobile Cloud Systems. IEEE Journal on Selected Areas in Communications, 33(12), 2510-2523. doi:10.1109/jsac.2015.2478718Abu Sharkh, M., & Shami, A. (2017). An evergreen cloud: Optimizing energy efficiency in heterogeneous cloud computing architectures. Vehicular Communications, 9, 199-210. doi:10.1016/j.vehcom.2017.02.004Bui, D.-M., Yoon, Y., Huh, E.-N., Jun, S., & Lee, S. (2017). Energy efficiency for cloud computing system based on predictive optimization. Journal of Parallel and Distributed Computing, 102, 103-114. doi:10.1016/j.jpdc.2016.11.011Liu, A., Zhang, Q., Li, Z., Choi, Y., Li, J., & Komuro, N. (2017). A green and reliable communication modeling for industrial internet of things. Computers & Electrical Engineering, 58, 364-381. doi:10.1016/j.compeleceng.2016.09.005Kim, J. (2015). Energy-Efficient Dynamic Packet Downloading for Medical IoT Platforms. IEEE Transactions on Industrial Informatics, 11(6), 1653-1659. doi:10.1109/tii.2015.2434773Chiu, T.-C., Shih, Y.-Y., Pang, A.-C., & Pai, C.-W. (2017). Optimized Day-Ahead Pricing With Renewable Energy Demand-Side Management for Smart Grids. IEEE Internet of Things Journal, 4(2), 374-383. doi:10.1109/jiot.2016.2556006Gandotra, P., Jha, R. K., & Jain, S. (2017). Green Communication in Next Generation Cellular Networks: A Survey. IEEE Access, 5, 11727-11758. doi:10.1109/access.2017.2711784Li, J., Peng, M., Yu, Y., & Ding, Z. (2016). Energy-Efficient Joint Congestion Control and Resource Optimization in Heterogeneous Cloud Radio Access Networks. IEEE Transactions on Vehicular Technology, 65(12), 9873-9887. doi:10.1109/tvt.2016.2531184Kaiwartya, O., Abdullah, A. H., Cao, Y., Lloret, J., Kumar, S., Shah, R. R., … Prakash, S. (2018). Virtualization in Wireless Sensor Networks: Fault Tolerant Embedding for Internet of Things. IEEE Internet of Things Journal, 5(2), 571-580. doi:10.1109/jiot.2017.2717704Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3kaiwartya, omprakash, Abdullah, A., Cao, Y., Rao, R. S., Kumar, S., Lobiyal, D. K., … Shah, R. R. (2016). T-MQM: Testbed based Multi-metric Quality Measurement of Sensor Deployment for Precision Agriculture-A Case Study. IEEE Sensors Journal, 1-1. doi:10.1109/jsen.2016.2614748Alrajeh, N. A., Khan, S., Lloret, J., & Loo, J. (2013). Secure Routing Protocol Using Cross-Layer Design and Energy Harvesting in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 9(1), 374796. doi:10.1155/2013/374796Mehmood, A., Khan, S., Shams, B., & Lloret, J. (2013). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972-989. doi:10.1002/dac.272
    corecore