589 research outputs found

    Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding.

    Get PDF
    Sparse superposition codes were recently introduced by Barron and Joseph for reliable communication over the AWGN channel at rates approaching the channel capacity. The codebook is defined in terms of a Gaussian design matrix, and codewords are sparse linear combinations of columns of the matrix. In this paper, we propose an approximate message passing decoder for sparse superposition codes, whose decoding complexity scales linearly with the size of the design matrix. The performance of the decoder is rigorously analyzed and it is shown to asymptotically achieve the AWGN capacity with an appropriate power allocation. Simulation results are provided to demonstrate the performance of the decoder at finite blocklengths. We introduce a power allocation scheme to improve the empirical performance, and demonstrate how the decoding complexity can be significantly reduced by using Hadamard design matrices.Comment: 25 pages, 4 figures. IEEE Transactions on Information Theor

    Generalized Approximate Message-Passing Decoder for Universal Sparse Superposition Codes

    Get PDF
    Sparse superposition (SS) codes were originally proposed as a capacity-achieving communication scheme over the additive white Gaussian noise channel (AWGNC) [1]. Very recently, it was discovered that these codes are universal, in the sense that they achieve capacity over any memoryless channel under generalized approximate message-passing (GAMP) decoding [2], although this decoder has never been stated for SS codes. In this contribution we introduce the GAMP decoder for SS codes, we confirm empirically the universality of this communication scheme through its study on various channels and we provide the main analysis tools: state evolution and potential. We also compare the performance of GAMP with the Bayes-optimal MMSE decoder. We empirically illustrate that despite the presence of a phase transition preventing GAMP to reach the optimal performance, spatial coupling allows to boost the performance that eventually tends to capacity in a proper limit. We also prove that, in contrast with the AWGNC case, SS codes for binary input channels have a vanishing error floor in the limit of large codewords. Moreover, the performance of Hadamard-based encoders is assessed for practical implementations

    Replica Analysis and Approximate Message Passing Decoder for Superposition Codes

    Full text link
    Superposition codes are efficient for the Additive White Gaussian Noise channel. We provide here a replica analysis of the performances of these codes for large signals. We also consider a Bayesian Approximate Message Passing decoder based on a belief-propagation approach, and discuss its performance using the density evolution technic. Our main findings are 1) for the sizes we can access, the message-passing decoder outperforms other decoders studied in the literature 2) its performance is limited by a sharp phase transition and 3) while these codes reach capacity as BB (a crucial parameter in the code) increases, the performance of the message passing decoder worsen as the phase transition goes to lower rates.Comment: 5 pages, 5 figures, To be presented at the 2014 IEEE International Symposium on Information Theor

    Capacity-achieving Spatially Coupled Sparse Superposition Codes with AMP Decoding

    Get PDF
    Sparse superposition codes, also referred to as sparse regression codes (SPARCs), are a class of codes for efficient communication over the AWGN channel at rates approaching the channel capacity. In a standard SPARC, codewords are sparse linear combinations of columns of an i.i.d. Gaussian design matrix, while in a spatially coupled SPARC the design matrix has a block-wise structure, where the variance of the Gaussian entries can be varied across blocks. A well-designed spatial coupling structure can significantly enhance the error performance of iterative decoding algorithms such as Approximate Message Passing (AMP). In this paper, we obtain a non-asymptotic bound on the probability of error of spatially coupled SPARCs with AMP decoding. Applying this bound to a simple band-diagonal design matrix, we prove that spatially coupled SPARCs with AMP decoding achieve the capacity of the AWGN channel. The bound also highlights how the decay of error probability depends on each design parameter of the spatially coupled SPARC. An attractive feature of AMP decoding is that its asymptotic mean squared error (MSE) can be predicted via a deterministic recursion called state evolution. Our result provides the first proof that the MSE concentrates on the state evolution prediction for spatially coupled designs. Combined with the state evolution prediction, this result implies that spatially coupled SPARCs with the proposed band-diagonal design are capacity-achieving. Using the proof technique used to establish the main result, we also obtain a concentration inequality for the MSE of AMP applied to compressed sensing with spatially coupled design matrices. Finally, we provide numerical simulation results that demonstrate the finite length error performance of spatially coupled SPARCs. The performance is compared with coded modulation schemes that use LDPC codes from the DVB-S2 standard
    corecore