1,160 research outputs found

    Attaining Knowledge Workforce Agility in a Product Life Cycle Environment using Real Options

    Get PDF
    The product life cycle (PLC) phenomenon has placed significant pressures on high-tech industries which rely heavily on the knowledge workforce in transferring cutting-edge technologies into products. This thesis examines systems where market changes and production technology advances happen frequently and unpredictably during the PLC, causing difficulties in predicting an appropriate demand on the knowledge workforce and in maintaining reliable performance. Knowledge workforce agility (KWA) is identified as a desirable means for addressing the difficulties, and yet previous work on KWA is incomplete. This thesis accomplishes several critical tasks for realizing the benefits of KWA in a representative PLC environment, semiconductor manufacturing. Real options (RO) is chosen as the approach towards exploiting KWA, since RO captures the essence of KWA-options in manipulating knowledge capacity, a human asset, or a self-cultivated organizational capability for pursuing interests associated with change. Accordingly, market demand change and workforce knowledge (WK) dynamics in adoption of technology advances are formulized as underlying stochastic processes during the PLC. This thesis models KWA as capacity options in a knowledge workforce and develops a RO approach of workforce training, either initial or continuous, for generating options. To quantify the elements of KWA that impact production, the role of the knowledge workforce in production and costs in obtaining KWA are characterized mathematically. It creates necessary RO valuation methods and techniques to optimize KWA. An analytical examination of the PLC models identifies that KWA has potential to reduce negative impacts and generate opportunities in an environment of volatile demand, and to compensate unreliable performance of knowledge workforce in adoption of technology advances. The benefits of KWA are especially important when confronting highly volatile demand, a low initial adoption level, shrinking PLCs, a growing market size, intense and frequent WK dynamics, insufficient learning capability of employees, or diminishing returns from investments in learning. The thesis further assesses RO, as an agility-driven approach, by comparing it to a chase-demand heuristic and to the Bass forecasting model under demand uncertainty. The assessment demonstrates that the KWA attained from the RO approach, termed RO-based KWA, leads to a stably higher yield, to a persistently larger net present value (NPV), and to a NPV distribution that is more robust to highly volatile demand. Subsequently, a quantitative evaluation of KWA value shows that the RO-based KWA creates a considerable profit growth, either with uncertainty in demand or in the WK dynamics. In evaluation, RO modeling and the RO valuation are identified to be useful in creation of KWA value especially in highly uncertain PLC environments. This thesis illustrates the effectiveness of the numerical methods used for solving the dynamic system problem. This research demonstrates an approach for optimizing KWA in PLC environments using RO. It provides an innovative solution for knowledge workforce planning in rapidly changing and highly unexpected environments. The work of this thesis is representative of studying KWA using quantitative techniques, where there is a dearth of quantitative studies in the literature

    From Confrontation to Coopetition in the Globalized Semiconductor Industry

    Get PDF
    The silicon chip is not only a symbol of marvellous technologies that are transforming industrial production and leisure time in society, but also of trade and technology conflicts while at the same time offering the potential for cooperation.The purpose of this paper is to show that the semiconductor industry has moved from being highly confrontational to being much more cooperative as is evidenced by the emergence of cross-national strategic alliances between companies, spanning R&D, product development, production and distribution.Over the last 15 years the semiconductor industry has experienced startling reversals of competitive fortune in which the USA dominated in 1970s, then Japan entered in 1980s, and in 1986 surpassed the USA as the largest producer of semiconductors with most US firms abandoning DRAM production due to price competition.This reversal of market position has become known as the X-curve. Since the early 1990s the Americans are on top again but with the Koreans and the Taiwanese coming on fast.With China and perhaps India coming on line in the present decade or so, these reversals in competitiveness will continue to play themselves out in the market.Due to external economies and spillover effects for other industries, this industry is considered to be a strategic sector, not only in the USA, where the industry came into existence, but also in Japan and Europe.Observing the excessive returns earned initially in this industry in the USA, Japanese companies wanted to shift these profits, at least in part, to Japan, for which the Japanese government provided support.The closing of the Japanese market both to imports and foreign direct investment undermined the initial American competitive strength.In order to counteract the loss of competitiveness the US industry reacted, besides by restructuring, by creating, with government funding, the research consortium SEMATECH, while the American government responded by concluding since 1986 bilateral trade agreements with Japan in which Japan initially agreed to "voluntarily" restrict its exports of semiconductors and to "voluntarily" expand the imports of American chips.In the mid-1980s Europe was a marginal player in the global competitive battle and suffered dependence on the USA and Japan.This was a consequence of decisions taken by European firms but part also lies in the fragmentation of the European market and the policy pursued by

    Array automated assembly task, phase 2. Low cost silicon solar array project

    Get PDF
    Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed

    From Strategic Trade Policy to Strategic Alliances in the Global Semiconductor Industry

    Get PDF

    Further Cost Reduction of Battery Manufacturing

    Get PDF
    The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV) and wind energy installation as well as electric vehicle (EV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion) and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in physical and electrical properties. These properties can be improved and made uniform by considering the electrical model of batteries and adopting novel manufacturing approaches. Using quantum-photo effect, the incorporation of ultra-violet (UV) assisted photo-thermal processing can reduce metal surface roughness. Using in-situ measurements, advanced process control (APC) can help ensure uniformity among the constituent electrochemical cells. Industrial internet of things (IIoT) can streamline the production flow. In this article, we have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from cell-level to battery-level process variability, and proposed potential areas where improvements in the manufacturing process can be made. By incorporating these practices in the manufacturing process we expect reduced cost of energy management system, improved reliability and yield gain with the net saving of manufacturing cost being at least 20%
    • …
    corecore