2,054 research outputs found

    Energy-Efficient selective activation in Femtocell Networks

    Get PDF
    Provisioning the capacity of wireless networks is difficult when peak load is significantly higher than average load, for example, in public spaces like airports or train stations. Service providers can use femtocells and small cells to increase local capacity, but deploying enough femtocells to serve peak loads requires a large number of femtocells that will remain idle most of the time, which wastes a significant amount of power. To reduce the energy consumption of over-provisioned femtocell networks, we formulate a femtocell selective activation problem, which we formalize as an integer nonlinear optimization problem. Then we introduce GREENFEMTO, a distributed femtocell selective activation algorithm that deactivates idle femtocells to save power and activates them on-the-fly as the number of users increases. We prove that GREENFEMTO converges to a locally Pareto optimal solution and demonstrate its performance using extensive simulations of an LTE wireless system. Overall, we find that GREENFEMTO requires up to 55% fewer femtocells to serve a given user load, relative to an existing femtocell power-saving procedure, and comes within 15% of a globally optimal solution

    Opportunistic Third-Party Backhaul for Cellular Wireless Networks

    Full text link
    With high capacity air interfaces and large numbers of small cells, backhaul -- the wired connectivity to base stations -- is increasingly becoming the cost driver in cellular wireless networks. One reason for the high cost of backhaul is that capacity is often purchased on leased lines with guaranteed rates provisioned to peak loads. In this paper, we present an alternate \emph{opportunistic backhaul} model where third parties provide base stations and backhaul connections and lease out excess capacity in their networks to the cellular provider when available, presumably at significantly lower costs than guaranteed connections. We describe a scalable architecture for such deployments using open access femtocells, which are small plug-and-play base stations that operate in the carrier's spectrum but can connect directly into the third party provider's wired network. Within the proposed architecture, we present a general user association optimization algorithm that enables the cellular provider to dynamically determine which mobiles should be assigned to the third-party femtocells based on the traffic demands, interference and channel conditions and third-party access pricing. Although the optimization is non-convex, the algorithm uses a computationally efficient method for finding approximate solutions via dual decomposition. Simulations of the deployment model based on actual base station locations are presented that show that large capacity gains are achievable if adoption of third-party, open access femtocells can reach even a small fraction of the current market penetration of WiFi access points.Comment: 9 pages, 6 figure

    Price-Based Resource Allocation for Spectrum-Sharing Femtocell Networks: A Stackelberg Game Approach

    Full text link
    This paper investigates the price-based resource allocation strategies for the uplink transmission of a spectrum-sharing femtocell network, in which a central macrocell is underlaid with distributed femtocells, all operating over the same frequency band as the macrocell. Assuming that the macrocell base station (MBS) protects itself by pricing the interference from the femtocell users, a Stackelberg game is formulated to study the joint utility maximization of the macrocell and the femtocells subject to a maximum tolerable interference power constraint at the MBS. Especially, two practical femtocell channel models: sparsely deployed scenario for rural areas and densely deployed scenario for urban areas, are investigated. For each scenario, two pricing schemes: uniform pricing and non-uniform pricing, are proposed. Then, the Stackelberg equilibriums for these proposed games are studied, and an effective distributed interference price bargaining algorithm with guaranteed convergence is proposed for the uniform-pricing case. Finally, numerical examples are presented to verify the proposed studies. It is shown that the proposed algorithms are effective in resource allocation and macrocell protection requiring minimal network overhead for spectrum-sharing-based two-tier femtocell networks.Comment: 27 pages, 7 figures, Submitted to JSA

    Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

    Get PDF
    Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions

    Handover Management in Highly Dense Femtocellular Networks

    Full text link
    For dense femtocells, intelligent integrated femtocell/macrocell network architecture, a neighbor cell list with a minimum number of femtocells, effective call admission control (CAC), and handover processes with proper signaling are the open research issues. An appropriate traffic model for the integrated femtocell/macrocell network is also not yet developed. In this paper, we present the major issue of mobility management for the integrated femtocell/macrocell network. We propose a novel algorithm to create a neighbor cell list with a minimum, but appropriate, number of cells for handover. We also propose detailed handover procedures and a novel traffic model for the integrated femtocell/macrocell network. The proposed CAC effectively handles various calls. The numerical and simulation results show the importance of the integrated femtocell/macrocell network and the performance improvement of the proposed schemes. Our proposed schemes for dense femtocells will be very effective for those in research and industry to implement
    corecore