996 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Power Switching Protocol for Two-way Relaying Network under Hardware Impairments

    Get PDF
    In this paper, we analyze the impact of hardware impairments at relay node and source node (i.e. imperfect nodes) on network performance by evaluating outage probability based on the effective signal to noise and distortion ratio (SNDR). Especially, we propose energy harvesting protocol at the relay and source nodes, namely, power switching imperfect relay (PSIR) and power switching imperfect source (PSIS). Aiming to determine the performance of energy constrained network, we first derive closed-form expressions of the outage probability and then the throughput can be maximized in delay-limited transmission mode. The simulation results provide practical insights into the impacts of hardware impairments and power switching factors of the energy harvesting protocol on the performance of energy harvesting enabled two-way relaying network

    Performance analysis with wireless power transfer constraint policies in full-duplex relaying networks

    Get PDF
    In practice, full-duplex (FD) transmission mode not only helps extend the coverage but also lengthen network lifetime. In this paper, we develop wireless power supply policies, namely separated power (SP) and harvested power (HP) to propose a flexible architecture at the relay node in FD decode-and-forward (DF) relaying networks considering time switching-based relaying protocol (TSR) to achieve optimal time used for a communication process. This transmission mode requires more processing procedure at the relay, i.e. antenna installations and radio frequency (RF) self-interference cancellation. We evaluate the optimal power constraints in case of SP and HP to achieve better power consumption efficiency at the relay node. More importantly, closed-form expressions for outage probability and throughput are provided, and we also use numerical and simulation results to compare SP with HP.Web of Science234767
    corecore